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Artificial intelligence-enabled quantitative 
phase imaging methods for life sciences

Juyeon Park1,2,9, Bijie Bai3,4,9, DongHun Ryu1,2,8, Tairan Liu3, Chungha Lee1,2, 
Yi Luo3, Mahn Jae Lee2,5, Luzhe Huang3, Jeongwon Shin2,6, Yijie Zhang3, 
Dongmin Ryu7, Yuzhu Li3, Geon Kim1,2, Hyun-seok Min    7, Aydogan Ozcan    3,4   
& YongKeun Park    1,2,7 

Quantitative phase imaging, integrated with artificial intelligence, 
allows for the rapid and label-free investigation of the physiology and 
pathology of biological systems. This review presents the principles of 
various two-dimensional and three-dimensional label-free phase imaging 
techniques that exploit refractive index as an intrinsic optical imaging 
contrast. In particular, we discuss artificial intelligence-based analysis 
methodologies for biomedical studies including image enhancement, 
segmentation of cellular or subcellular structures, classification of types 
of biological samples and image translation to furnish subcellular and 
histochemical information from label-free phase images. We also discuss 
the advantages and challenges of artificial intelligence-enabled quantitative 
phase imaging analyses, summarize recent notable applications in the 
life sciences, and cover the potential of this field for basic and industrial 
research in the life sciences.

Optical imaging techniques have been indispensable tools for investi-
gating living systems for many centuries. The ability to image biological 
systems in high resolution over space and time would allow us to reveal 
the morphology and dynamics of these systems, providing insights into 
their underlying mechnisms1. Across various biological imaging tech-
niques, quantitative phase imaging (QPI) methods have rapidly emerged 
as powerful tools2–5. QPI methods take advantage of high-speed, three- 
dimensional (3D) imaging of living organisms at subcellular resolu-
tion in a nondestructive and label-free manner. As QPI methods exploit 
refractive index (RI) as an endogenous imaging contrast, they do not 
require exogenous labels for specimens, making them free from labeling- 
induced issues such as photobleaching, toxicity and variable data quality.

Alongside the growing utility of QPI methods in biomedicine, 
recent breakthroughs in artificial intelligence (AI) algorithms have 

expanded the capability and applicability of QPI methods. These break-
throughs have enabled fast and accurate downstream tasks such as 
image enhancement, classification, segmentation and translation of 
biomedical data (Fig. 1). In particular, the performance of deep learning 
approaches has been unprecedented, with the ability to approximate 
complex nonlinear functions for image processing tasks6. This has 
offered versatile solutions to numerous challenges in bioimaging. 
The quantitative and uniform-quality data generated by QPI methods 
enable deep learning approaches to efficiently learn target tasks and 
provide robust analysis tools for new biological discoveries.

In this Review, we focus on the integration of QPI and AI and how 
this intersection has advanced biomedical research. We introduce the 
principles, advantages and implementations of QPI methods, highlight 
the biomedical applications that have been achieved through this 
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phase. However, the basic principle of image formation based on the 
interference between incident and scattered waves is still valid17.

Advantages of using QPI for biomedical applications
To understand the advantages of QPI approaches for biological stud-
ies, it is helpful to compare them with other standard imaging meth-
ods, such as fluorescence microscopy and phase contrast microscopy 
(Fig. 2d). Fluorescence microscopy is a cornerstone method for visual-
izing various cellular and subcellular components of living biological 
systems. By using fluorescent probes that label specific molecules 
within cells, it is possible to simultaneously visualize various target 
system components, such as proteins and lipids, and their associated 
pathophysiology with high specificity and signal-to-noise ratio. How-
ever, preparing fluorescence-labeled samples can be a labor-intensive 
procedure, as overnight transfection of fluorescent protein report-
ers or other time-consuming serial procedures must precede imag-
ing. Moreover, photobleaching and phototoxicity severely limit the 
available time over which a sample can be observed by fluorescence 
microscopy. Continuous exposure to light from fluorescence micros-
copy can damage fluorescent molecules and make them gradually lose 
their ability to fluoresce, a phenomenon known as photobleaching18. 
In addition, cells are susceptible to phototoxicity, which is enhanced 
by the reactive chemical species generated by fluorescent molecules 
under illumination19. Recent advances in fluorescence microscopy 
techniques, such as light-sheet microscopy20,21, two-photon micros-
copy22,23, total internal reflection fluorescence microscopy24,25 and their 
integration with QPI techniques26, have mitigated photobleaching 
and phototoxicity by reducing the out-of-plane exposure27. However, 
the fundamental issues associated with labeling remain, highlight-
ing the need for label-free imaging in various biological and life 
science-related applications.

Phase contrast microscopy has been widely adopted in biological 
studies because it allows researchers to easily obtain high-contrast 
images of unlabeled specimens by converting phase shifts, induced by 
a transparent specimen, to amplitude variations. However, phase con-
trast microscopy can only measure thin specimens in two dimensions 
(2D)7. To obtain volumetric information, it is common to manually scan 
the sample along the optical axis. Importantly, the qualitative nature 
of both fluorescence microscopy and phase contrast microscopy can 
restrict one from performing consistent analysis. Calibration chal-
lenges originating from different users and variables in the protocols 
and imaging systems could produce inconsistent and irreproducible 
experimental results.

Compared to these conventional approaches, there are unique 
benefits to using QPI methods for biomedicine. First, QPI approaches 
that do not require fixations or labeling enable the continual monitor-
ing of cells and tissues. For example, QPI can be used for long-term 
monitoring of neuronal morphology without any interventions once 
the sample is prepared28. Rapid medical tests could also be realized 
by the short turnaround time of label-free QPI approaches29,30. Early 
screening of acute diseases, such as sepsis31, is crucial for their diag-
nosis and treatment. QPI-based testing frameworks could provide 
suitable solutions for rapid screening. In addition, its ability to image 
intact cells would be crucial in various clinical research studies where 
unmodified cells or tissues that are transplantable to patients could 
be important.

In addition to the label-free imaging capability, QPI provides vari-
ous morphological and biochemical parameters quantitatively, ena-
bling systematic and statistical analysis at the single-cell level. It has 
been extensively studied that the RI distribution and its associated 
quantitative phase map of the specimen are directly related to charac-
teristic parameters, such as cell volume, surface area, sphericity and dry 
mass, which corresponds to the nonaqueous content of the cells5,32,33. 
By harnessing these multidimensional parameters generated using 
QPI methods, one may find unexplored insights and interpretations of 

combination and discuss the outlook for this emerging synergy in the 
areas of systems biology and digital medicine.

QPI
Principles of QPI
When light passes through a transparent object, its phase, rather 
than its amplitude, is primarily modulated. However, as most bio-
logical systems are inherently transparent, it is challenging to obtain 
high-quality images using conventional bright-field microscopy, 
which can only measure the intensity of the light transmitted from 
a sample. Utilizing the phase as an imaging contrast can provide a 
solution to visualize transparent systems, but the phase cannot be 
directly measured using standard image sensors, as the bandwidth of 
modern imagers is yet to be sufficiently high to record the phase with 
high temporal frequency. To circumvent this limit, Zernike’s phase 
contrast microscopy7 and its variants8 have been developed. They 
introduce a phase plate in an optical imaging system, which enables 
the conversion of the modulated phase into detectable intensity con-
trast, allowing visualization of the phase modulation induced by the 
transparent samples. However, the nonlinear relationship between 
the phase and the measured intensity limits their use to qualitative 
analysis of biological systems.

To overcome the qualitative nature of Zernike’s phase contrast 
microscopy, various QPI methods have been developed to achieve 
quantitative analyses of biological systems (Fig. 2a–c). QPI meth-
ods can generally be categorized into either interferometric or 
non-interferometric QPI (Fig. 2a,b). Interferometric QPI methods 
utilize the interference between a sample beam, scattered from 
a sample, and a reference beam. Both beams are recorded as an 
interferogram, from which both the amplitude and phase images 
are retrieved using field retrieval algorithms2,9–11. On the contrary, 
non-interferometric QPI methods reconstruct the amplitude and 
phase information from the transmitted intensity images obtained 
under specific illumination or imaging conditions12,13. The phase 
images are then retrieved from the intensity images using intensity 
and phase relations, which vary with the type of QPI method used14–16. 
It should be noted that the term ‘non-interferometric’ is introduced 
to clearly differentiate it from the use of an interferogram to retrieve 
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Fig. 1 | AI-integrated QPI methods applied to biomedical research. Synergistic 
combination of AI and QPI techniques can be applied to various biomedical 
research areas, including image enhancement, segmentation, classification and 
translation.
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biological experiments with computational analysis. We also envision 
that present-day AI algorithms and graphic processing units that can  
process a massive amount of data would enable large-scale QPI data  
to be analyzed, creating new possibilities in biomedical research.

Implementations of QPI
The essence of QPI was established by Gabor in 1948 when he proposed 
an imaging strategy for correcting the spherical aberrations of electron 
lenses34. By measuring the interference pattern between the illumi-
nation wave and the secondary wave scattered from an object at an 
out-of-focus position, ‘a complete record of amplitudes and phases’ 

of the scattered field became possible. The early QPI techniques of 
this type, such as the Gabor in-line holography, have been extensively 
explored by researchers35–37. The implementations of in-line holography 
often use phase-shifting interferometry, which retrieves the quanti-
tative phase distribution of a sample from multiple measurements 
obtained with different phase shifts introduced to the reference beam. 
However, this method requires at least four sequentially captured 
phase-shifted images35–37, which limits the throughput of the systems.

Furthermore, as Gabor pointed out, in-line holography is incapa-
ble of ‘distinguishing positive and negative phase shifts’ with respect 
to illuminating waves along the optical axis. As a result of recording 
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achieving 3D visualization of biomedical systems. d, Advantages of using 
machine learning-integrated QPI for life science-related studies. Compared to 
conventional fluorescence imaging, QPI methods do not require staining or 
labeling before imaging, resulting in quantitative measurements and facilitating 
the integration of machine learning for robust downstream analyses. a.u., 
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only the intensity of a hologram, it also generates twin images of the 
same amount of phase shifts but with reversed signs34. A straight-
forward strategy to address this issue is the spatial separation of the 
twin images at the Fourier space, which can be realized by the angular 
separation of the reference beam from the sample beam38, that is, using 
off-axis configuration39. Notably, off-axis holography not only allows 
the physical separation of the twin images but also requires only one 
single hologram to uniquely determine the phase of the scattered field. 
Such single-shot imaging capability becomes crucial when monitoring 
the dynamics of moving objects, namely, living cells, in real time. For 
such merit, various QPI techniques have been developed based on the 
off-axis geometry, including digital holographic microscopy9, Hilbert 
phase microscopy11 and diffraction phase microscopy10.

QPI methods in general have used coherent light sources. How-
ever, the use of coherent sources poses a fundamental challenge to 
the accurate reconstruction of scattered fields: the coherence of the 
light source might generate excessive interference fringes due to scat-
tered light from unwanted objects (for example, dust particles or 
surface scratches) within the sample volume. To manage and suppress 
coherence artifacts and noise, numerous efforts have been made in 
developing partially coherent or incoherent QPI methods. Examples 
include spatial light interference microscopy (SLIM)40 and white-light 
diffraction phase microscopy41, which modulate the reference beam 
temporally and spatially, respectively, to obtain phase images. In addi-
tion to noise reduction, these approaches can also enable a higher 
space–bandwidth product, such as in Fourier ptychographic micro
scopy (FPM)16,42 and differential phase contrast microscopy15,43. FPM 
combines multiple low-resolution images captured under different 
illumination angles to produce a high-resolution phase image over 
a large field of view, whereas differential phase contrast microscopy 
recovers phase images from measurements under asymmetric illu-
mination patterns. Additional examples include quadriwave lateral 
shearing interferometry44 and gradient light interference microscopy45, 
which can be easily integrated into conventional optical microscopes 
for QPI. Furthermore, lens-free on-chip holography46–49 with partially 
coherent illumination light has also been developed, which achieves 
a very large sample volume to be probed in a compact optical setup. 
A special case of non-interferometric QPI is based on the transport  
of intensity equation (TIE), which relates the axial derivative of the 
optical intensity to the phase information of the sample at the in-focus 
plane50,51. Therefore, to extract the phase information of the sample 
using TIE, axial scanning of a sample is necessary12.

Further advances have been made over the past few decades to 
develop QPI methods for 3D samples52,53, which have been extensively 
utilized in biological research54–57. Among those, optical diffraction 
tomography (ODT), theoretically introduced in 1969 (ref. 58), achieves 
reconstruction of the 3D RI map of a sample. The reconstruction is 
based on multiple 2D fields retrieved from 2D holograms of the sample 
illuminated at various angles3. Furthermore, ODT that uses a partially 
coherent source has also been demonstrated13,59–62. Other efforts have 
been made to solve the multiple scattering problems, which occur 
when the first Born approximation is no longer valid for optically thick 
samples63–66. Additionally, flow cytometric strategies are combined 
with digital holography, enabling high-throughput 3D imaging of indi-
vidual cells67. The commercialized QPI techniques are shown in Table 1.

Recent QPI methods have addressed diverse imaging challenges 
across cellular to tissue scales. At the cellular scale, the label-free 3D 
imaging capability of ODT has enabled the monitoring of neurite 
growth28 and provided biomechanical insights by measuring the 3D 
traction forces of individual cells68. The low spatial noise and tempo-
ral stability of SLIM allowed it to be used to quantify the cell-to-cell 
lipid-content heterogeneity69 and study microtubule motility70. Fur-
thermore, QPI methods were used to address tissue-level challenges, 
such as monitoring vasculogenesis and the measurement of micro-
vascular permeability71, structural heterogeneity72 and stiffness73 of 

tissue. As QPI methods continue to improve and overcome technical 
limitations, they can address future challenges in life science-related 
imaging needs, including imaging freshly excised tissue samples and 
performing in vivo, intraoperative and organ-level imaging.

The combination of AI and QPI
QPI methods have been beneficial in a wide array of biomedical 
domains, owing to the capability of extending to 3D imaging and 
extracting diverse biophysical variables. In addition, the reproduc-
ible and consistent QPI data invariant across samples and instruments 
have made AI algorithms more suitable for deployment. Concurrently,  
the accessibility of AI software infrastructures has led to the widespread 
adoption of AI algorithms in various disciplines, including QPI-based 
biomedical studies74–76.

AI algorithms can be applied to diverse phase image reconstruc-
tion methods for QPI and subsequent image quality enhancement 
procedures, allowing scientists to generate data and results accu-
rately and rapidly. In particular, deep neural networks can be actively 

Table 1 | Commercialized QPI techniques and their 
applications

Manufacturers Technique (product) Applications

Trimos White-light interferometry9 
(TR scan series)

Surface topography

Holmarc Digital holographic 
microscopy9 (HO series)

Cancer cell biology, particle 
detection

Lyncée Tec Digital holographic 
microscopy9 (DHM series)

Cytotoxicity, cell dynamics, 
neuroscience, surface 
topography, dynamic 
topography

Phasics Quadriwave lateral shearing 
interferometry44 (SID4 
series)

Cytology, histology, surface 
topography

PHI AB Digital holographic 
microscopy9 (HoloMonitor)

Cell motility, cell migration, 
wound healing, 3D matrix 
cell culture assays

Telight White-light digital 
holographic microscopy9 
(Q-Phase)

Cancer cell biology, 
immunology, drug toxicity, 
3D matrix cell culture assays

Nanolive Holographic tomography3 
(3D cell explorer series)

Cytotoxicity, intercellular 
dynamics, lipid imaging, 
cancer cell biology

Phasefocus Ptychogarphic QPI174 
(LiveCyte)

Wound healing, 
angiogenesis, toxicology

Phi Optics White-light diffraction 
phase microscopy (ref. 41)a, 
SLIM (ref. 40)a, gradient light 
interference microscopy 
(ref. 45)a

Cell topography, cell 
dynamics, cell growth, 
neuroscience, tissue 
imaging, developmental 
biology

Tomocube The 1st generation 
holotomography (HT-2)3

The 2nd generation 
holotomography 
(HT-X1)14,61,175

Cell therapy, organoid 
imaging and analysis, 
intercellular dynamics, lipid 
imaging, bacteria analysis

Lucendi In-line holography46 
(Aqusens)

In-field, automated 
monitoring of micro-objects 
in liquids

Spheryx In-line holography46 
(total holographic 
characterization)

Cell viability, 
pharmaceutical monitoring, 
screening semiconductor 
and water quality

Conzeb Free-space 
angular-chirp-enhanced 
delay176–178 (FACED)

Blood screening, cancer 
cell biology, imaging flow 
cytometry

aAdd-on module
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utilized to approximate the phase reconstruction models to improve 
the speed and quality of reconstructions (further discussed below). 
Furthermore, a number of image quality enhancement tasks in QPI can 
benefit from the capacity of deep learning-based methods to model 
high-dimensional operators, including noise reduction and resolu-
tion enhancement. In most cases, these learning-based approaches 
not only result in reduced image processing time compared to con-
ventional methods77,78 but also produce more accurate QPI data for 
computer algorithms and researchers to improve their subsequent 
analysis.

The rapid and accurate interpretation of QPI images, indispensable 
for biomedical research, can also be achieved with the help of AI. Some 
of these tasks include segmentation, classification and cross-modality 
inference using QPI images. Image segmentation for extracting the 
region of interest within the target cells or organelles is essential for 
various tasks, such as cell counting and other biophysical parameter 
quantification. Conventionally, such segmentations and the following 
annotations to identify meaningful features are manually performed, 
which could be labor intensive and inconsistent. AI-assisted segmenta-
tion could alleviate these issues, enabling rapid and automated down-
stream tasks, including object classification and tracking. Furthermore, 
image classification using AI can enhance the utility of QPI in numerous 
biological and clinical studies, including rapid classification of cell 
types and bacterial species.

The superior capability of AI in image-to-image transformation has 
driven the development of various cross-modality imaging approaches 
through QPI. AI-enabled cross-modality image-to-image translation 
from label-free QPI into traditional standard visualizations of biological 
samples with exogenous labels, such as fluorescence, histochemical 
and immunohistochemical stains, has provided a nondestructive 
alternative to inspect biological specimens, which will be further dis-
cussed below. Table 2 provides a summary of these algorithms that have 
been used in QPI for life science applications. Note that the prevailing 
algorithms reported so far in this field heavily rely on deep learning, 
which is a subset of AI.

Image reconstruction and enhancement
Conventionally, to determine the quantitative phase information of a 
sample, iterative reconstruction algorithms are performed to extract 
phase values from single or multiple intensity-only measurements 
acquired using sophisticated imaging systems. Some of the major 
goals for using AI-augmented methods for hologram reconstruction 
include eliminating the need to use complicated optical systems that 
require accurate alignment, shortening the data acquisition time and 
speeding up the phase recovery algorithms.

It has been demonstrated that a deep neural network can be used 
to quantitatively retrieve the phase distribution of a 2D, thin biological 
sample measured by different QPI modalities, achieving comparable 
accuracy to the conventional reconstruction methods79–81. For instance, 
in-line holography has been strengthened by AI79,82,83. Rivenson et al.79 
demonstrated using a trained convolutional neural network (CNN) to 
quantitatively reconstruct the complex optical field from one single 
intensity measurement using in-line holography (Fig. 3a). The trained 
CNN also successfully removed the twin image artifact, which normally 
arises due to the inability of in-line holography to distinguish the sam-
ple wave from its complex conjugate using a single hologram, eliminat-
ing the need for multiple measurements for the holographic 
reconstruction. In addition to CNNs, recent studies developed recur-
rent neural networks (RNNs)84 and Fourier imager networks85 for quan-
titative phase reconstruction using multiple intensity measurements 
by in-line holography, enabling efficient utilization of sample informa-
tion encoded in multiple measurements and demonstrating the 
state-of-the-art reconstruction quality and improved generalization 
capability among all conventional and AI-based methods. Also, the 
efficiency of tomographic flow cytometry has been enhanced in terms 
of processing time and memory by exploiting contextual aggregation 
networks for the end-to-end reconstruction of RI tomograms86. 
Another emerging QPI technique in recent years, FPM, has also been 
empowered with AI80. By training a neural network, the quantitative 
phase image can be reconstructed using fewer FPM intensity measure-
ments without compromising the field of view or resolution, which 

Table 2 | AI methods and applications

Learning type Name Applications

Machine learning KNN Cell classification132

Linear discriminant analysis Cell classification143

Random forest Tissue region segmentation115, cell classification140

SVM Cell classification133,134,144,145

Deep learning/supervised Contextual aggregation network Holographic reconstruction86

DenseNet Bacterial species classification30, plaque-forming unit classification151, bacterial 
colony classification147

Fourier imager network Holographic reconstruction85

FishNet Cell classification29

GAN Holographic reconstruction80,87, virtual staining152,154

Residual network (ResNet) Phase unwrapping88, noise reduction103, cell classification138,142,148

RNN Holographic reconstruction84,100, cell classification137

U-Net Holographic reconstruction82,104, Resolution enhancement89,90,109, noise 
reduction101, cellular segmentation54,55,117–119, virtual staining57,156

Visual geometry group Tissue region classification146, cell classification149

Other artificial neural networks 
(unspecified benchmark)

Holographic reconstruction79,105, noise reduction102,107, microalgae classification141, 
cell classification150, cell virtual staining155

Deep learning/self-supervised GedankenNet Holographic reconstruction96

Deep learning/unsupervised cycleGAN Holographic reconstruction92,94, resolution enhancement95, noise reduction106, 
virtual staining153

Learning-free/iterative optimization DIP Phase reconstruction98, resolution enhancement99
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substantially saves reconstruction time and the required amount of 
data80,87 (Fig. 3b). More efforts have also been made in accelerating 
phase unwrapping88, which eliminates the 2π  ambiguity in the recon-
structed phase88, combining phase recovery with autofocusing, as well 
as in extending the depth of field of holographic imaging system82,84. 
Besides using AI to improve the QPI reconstruction efficiency or imag-
ing throughput, Wu et al.83 demonstrated a ‘bright-field holography’ 
method, in which a deep neural network was trained to generate volu-
metric bright-field microscopy images using back-propagation of a 
single hologram to different positions. It combines the benefits of the 
high color contrast of bright-field microscopy and the long depth of 
field of holography, providing a rapid and high-throughput solution 
to imaging volumetric samples.

Deep learning-based image reconstruction approaches have also 
been widely used in 3D QPI systems to overcome existing difficulties. 
One of the challenges is the missing cone problem in diffraction tomog-
raphy, which refers to the inaccessible information along the z axis of 
the optical transfer function due to the limited numerical aperture 
of the objective lens. Conventionally, this problem was addressed by 
applying regularization algorithms with prior knowledge of the sample 
properties, for example, non-negativity, low image gradient and so on, 
and typically requires a long processing time77. In this scenario, the 
data-driven approach can be advantageous in the prediction of missing 
spatial frequency information and the performance of reconstruction 
without explicit prior knowledge. Ryu et al.89 optimized a 3D U-Net that 
transforms raw RI tomograms of various eukaryotic cells with missing 
cone artifacts into resolution-enhanced total variation-regularized 
ones (Fig. 3c). This neural network-based tomogram reconstruction 
method is more than an order of magnitude faster compared to the 
conventional iterative methods. Lim et al.90 created digital phantoms as 
3D samples and generated synthetic 2D measurements from the digital 
phantoms via the discrete dipole approximation. A residual U-Net was 

trained with this synthetic dataset and successfully reconstructed the 
3D tomography of red blood cells using tomograms captured in real 
experiments.

The abovementioned works fall into the supervised learning cate
gory, meaning it requires a comprehensive dataset of well-registered 
image pairs (for example, a single in-line hologram of a sample and the 
corresponding phase-recovered image) to train the neural networks. 
However, under many circumstances, the input image and ground 
truth image pairs are inaccessible or impractical to obtain. Imperfect 
registration between the input images and their ground truth labels 
can also greatly degrade a network’s performance. Unsupervised learn-
ing methods that do not require paired image dataset have recently 
gained momentum to tackle this challenge. An unsupervised learning 
framework termed cycle-consistent generative adversarial networks 
(cycleGANs)91 was developed to achieve image-to-image transforma-
tion by training two generative adversarial networks (GANs) simultane-
ously in a cyclic way without using registered image pairs. Researchers 
demonstrated that, by combining the physical propagation model of 
light, the cycleGAN framework could be used for QPI reconstruction, 
replacing conventional iterative methods. For example, Yin et al.92 dem-
onstrated that the cycleGAN framework could eliminate the aberration 
artifact better than the traditional principal component analysis-based 
holographic reconstruction method93. Zhang et al.94 showed a similar 
framework that outperformed the standard TIE-based phase recovery 
method. Moreover, the better utility of such a framework is found 
in situations where ground truth images are challenging to acquire, 
especially in solving the missing cone artifact for 3D QPI systems. 
Recently, Chung et al.95 developed an unsupervised missing cone 
solver with cycleGANs and experimentally demonstrated 3D resolu-
tion enhancement of biological cells using ODT. The authors designed 
a cycleGAN to learn the optimal transport from those measured 2D 
projections of a biological sample to the estimated projections along 

a

b

CNN
Am

pl
itu

de
Ph

as
e

Am
pl

itu
de

Ph
as

e

Am
pl

itu
de

Ph
as

e

d

c
Raw 3D RIIllumination scan Output Conventional method

Sample

Measured fields

30
phase
(rad.)

amplitude
(a.u.)

0 1 5 s 60 s0

1.41

1.33

RI
5 µm

Time

y
x

Deep-
Regularizer

Train
z

x

k z
k x 10–10

(a.u.)
1010

e

Conventional 
methodOutputDIPRaw measurements

Center O�-axis (x) O�-axis (y)

Input

Amplitude

Phase

Output Target

Amplitude

Phase

Amplitude

Phase

U-Net

Object
(real space)

ar
ra

y
LE

D

Existing microscope

ca
m

er
a

inputs

Output Ground truth

C
N

N

Optimizer

Pupil plane
(fourier space)

W
 ×

 H
 ×

 a

rW × rH × 1rW × rH × 1

Calculate loss

Light path from brightfield illumination

Light path from darkfield illumination

≈

Multi-height
reconstruction

from 8
holograms

Hologram
intensity

Free space 
back - 

propagation

Network output
from a single

hologram
Network input

(with twin image)

50 µm

50 µm

20 µm 20 µm

a

b

c

d f

e g

Fig. 3 | Image reconstruction and enhancement of QPI using AI. a,b, Use of 
supervised learning frameworks to reconstruct 2D in-line holography79 and 
Fourier Ptychography80. c, 3D ODT reconstruction using supervised learning89. 

d, Iterative optimization methods for reconstructing 3D QPI images with DIP99. 
This method does not have any generalization ability on new samples. e, Image 
enhancement of QPI images using AI, achieving resolution improvement109.

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | November 2023 | 1645–1660 1651

Perspective https://doi.org/10.1038/s41592-023-02041-4

the inaccessible illumination angles, accordingly, filling up the miss-
ing cone in the Fourier space. The reconstruction fidelity was greatly 
improved, while also taking an order of magnitude less processing 
time compared to conventional iterative reconstruction methods. 
This approach that synergistically combines unsupervised learning 
and physics-based modeling tends to be less prone to overfitting for 
certain types of samples presented in the training datasets, leading to 
a strong generalization capability. Without requiring paired training 
examples, cycleGAN-based approaches also release the requirement 
of the laborious image registration process and shall be extensively 
investigated for a wider range of applications in biological studies.

Researchers have further investigated the use of data-driven meth-
ods in situations where a large number of training images are unavail-
able. The latest study reported a self-supervised learning framework 
termed GedankenNet to eliminate the requirement of experimental 
training image pairs96. By adopting a physics-consistency loss and 
randomly generated artificial training images with no resemblance 
to real-world samples, Huang et al. demonstrated that self-supervised 
learning models could yield superior reconstruction quality and gen-
eralization performance than supervised learning models when tested 
on various unseen biological samples. Another emerging deep learning 
modality, deep image prior (DIP)97, performs QPI reconstruction by 
iteratively optimizing an untrained deep neural network for a given 
input image, which completely gets rid of the preparation of a training 
dataset. However, the absence of a dataset also removed the generaliza-
tion capability of DIP, that is, the iterative optimization process needs to 
be repeated for every input image, which might take minutes to hours 
to compute. Albeit this limitation, researchers have demonstrated the 
success of applying DIP methods to perform QPI reconstruction. Wang 
et al.98 utilized DIP combined with Fresnel propagation to achieve phase 
imaging using a single hologram. Zhou and Horstmeyer99 used DIP 
to improve the 3D image quality of stacked microbeads and starfish 
embryos in diffraction tomography (Fig. 3d). The reconstructions 
reported in both works outperformed those using conventional itera-
tive methods. The DIP-based method might find its utility in situations 
where only a single-shot image is available, and the application is not 
time sensitive.

Another often-practiced method to address the lack of training 
data is transfer learning, where only a small task-specific dataset is 
needed to fine-tune a large network that has already been trained by 
a massive, general-purposed image dataset. Some efforts have been 
made to facilitate fast transfer learning to new data distributions100, 
so that a trained deep neural network on a limited training dataset can 
be conveniently adapted for QPI reconstruction on input images from 
unseen subjects and sample types.

Besides exploring the AI-augmented phase recovery methods, 
researchers have also demonstrated using AI to improve the image 
quality obtained using traditional QPI systems, such as AI-based noise/
aberration reduction and super-resolution. Different neural network 
architectures have been explored to remove aberration, speckles and 
coherent noise in QPI images101–103. In addition to denoising, neural 
networks have been shown to be effective and robust for QPI recon-
struction at low photon counts, where thermal noise becomes domi-
nant104,105. Besides the works that are based on supervised methods, 
the cycleGAN framework has also been adopted when access to a large 
training dataset is restricted. For example, to overcome the difficulty 
in acquiring high-quality noisy and noiseless hologram training pairs, 
Choi et al.106 reported a cycleGAN-based tomogram denoising frame-
work that was trained using unpaired clean and noisy RI tomograms. 
To further enhance the generalization of deep denoising networks, Wu 
et al.107 merged the physical forward model of the intensity diffraction 
tomography with a CNN-based image prior, which outperformed other 
popular image priors. Other than noise/aberration cancellation, AI also 
enables super-resolution108 of the QPI images. Liu et al.109 presented 
a U-Net-based super-resolution method suitable for enhancing the 

performance of various coherent imaging systems (Fig. 3e). In addition, 
unsupervised learning110 and DIP-based methods97 were developed for 
image super-resolution for natural images.

Segmentation
Segmentation of QPI data can be effectively achieved using AI, provid-
ing a starting point for the biomedical application of QPI methods. 
To create accurate segmentation masks for cellular and subcellular 
components, U-Net and its variants have been widely used111. These 
approaches typically treat segmentation as pixel-wise classification and 
train CNNs (or linear classifiers) to predict class probabilities for each 
pixel. Recent applications have involved the segmentation of diverse 
cellular structures, such as nuclei, neurites, synapses, membranes 
and lipid droplets.

As extensively demonstrated in computer vision tasks112, it has 
been shown for QPI data that the AI algorithms can generate segmen-
tation masks in a more accurate and faster manner compared to con-
ventional approaches, including manual segmentation113, ImageJ28, 
thresholding and watershed114 algorithms, which often require manual 
image processing before the segmentation, thus reducing the effi-
ciency of processing. As one of the pioneering works, Nguyen et al.115 
used the random forest algorithm for the automatic segmentation 
of prostate cancer tissue images collected using SLIM. Based on the 
obtained segmentation masks, they subsequently extracted morpho-
logical features of Gleason’s pattern score, enabling an automatic grad-
ing for prostate cancers. Later, using similar QPI data, a U-Net-based 
model was trained to generate the segmentation masks of subcellular 
organelles for biological experiments, including tracking of neurite 
dynamics (Fig. 4a)116, to determine real-time inference of dry mass for 
spheroids54, and to conduct morphological analysis of sperm cells117.

Another QPI modality to which deep learning-based segmenta-
tions have been applied is diffraction tomography. U-Net-inspired 
networks were trained to take each z plane of cell nuclei of RI tomo-
grams for tracking the morphological dynamics of breast cancer 
cells118. Similarly, Lee et al.55 proposed an automatic and quantitative 
spatiotemporal analysis framework for the 3D morphological and bio-
chemical study of immunological cells implementing the U-Net-based 
segmentation algorithm (Fig. 4b). Unlike the aforementioned deep 
learning that used 2D U-Net for each z slice, the 3D U-Net-based model, 
optimized using the neural architecture search, was proposed to per-
form segmentations for subcellular compartments within a single 
cell (Fig. 4c)119. Here, the complete tomographic information of the 
specimen was considered in the 3D segmentation network, which 
would enable accurate subsequent morphological analysis. In addi-
tion to the deep learning-based approach, a robust ad hoc clustering 
algorithm is used for automatic 3D cell nuclei segmentation120. We 
envision this framework would be powerful, particularly when QPI 
modalities with high-speed sample scanners or microfluidics, which 
can produce large-scale datasets, are combined121,122.

Classification
The accurate classification or identification of cell/pathogen types 
is of great importance in a wide range of life science and biomedical 
applications, such as clinical disease diagnoses, evaluation of cellular 
processes, drug discovery screening assays, and microbiome stud-
ies29,30,123–143. Traditional methods for classifying the cell/pathogen 
types are based on visual recognition performed by trained experts to 
distinguish the cells/pathogens, some of which are aided by chemical 
staining or proliferation. Adopting QPI techniques in classification 
problems provides a label-free framework with a simplified sample 
preparation procedure. Introducing AI in such QPI frameworks further 
increases the system throughput, improves classification accuracy, and 
makes the system more accessible for nonexperts. More importantly, AI 
classifiers trained in the supervised learning scheme can usually achieve 
superhuman classification accuracy. Based on all these strengths, QPI 
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with AI has been applied to a wide range of classification problems in 
life science and biomedical research, including the classification of 
different cancer cells, immune cells, sperm cells, cancer tissues and 
bacterial species.

Different from the segmentation problem, the output of a clas-
sifier is usually a single number representing the class of the input 
image/video. When the dataset of the input–label pairs is available, 
a classifier can be trained under the supervised learning framework. 
Along this direction, researchers have shown that traditional machine 
learning-based classification methods using QPI may achieve accept-
able accuracy in many applications125–127,129,132–134,139,140,143. For example, 
Park et al.132 demonstrated that the k-nearest-neighbor (KNN) algorithm 
can be used to detect the therapeutic effects of nano-drug delivery 
(Fig. 5a). Pirone et al. applied the random subspace method to the lin-
ear discriminant analysis to identify drug-resistant cancer cells from 
both 2D phase maps and 3D RI tomograms143. Lam et al. and Belashov 
et al. exploited the support vector machine (SVM) with QPI to quantify 
epithelial and mesenchymal qualities of cancer cells, predict different 
cancer cell lines134 (Fig. 5b) and monitor the photoinduced necrosis in 
HeLa cells133. Also, SVM showed its potential for classifying sperm cells 
appropriate for in vitro fertilization144 and classifying cancer cells and 
normal cells145. Other than KNN and SVM, the random forest-based 
algorithms were implemented by Paidi et al.140 to coarsely detect dif-
ferent stages of leukemia cells.

Deep learning-based methods were introduced for 
higher accuracy requirements and more challenging scenar-
ios29,123,124,128,130,131,135–138,141,142,146,147. Compared with the hypothesis-driven 
handcrafted feature extractors in traditional machine learning 
methods, deep neural networks automatically extract the hidden 
class-specific features directly from the raw image inputs by learn-
ing from the training examples, which often improves the classifica-
tion accuracy. For example, O’Connor et al. achieved a classification 

accuracy of 81.52% using a deep learning-based QPI method to distin-
guish healthy red blood cells and sickle cell disease cells, compared to 
the 72.93% accuracy obtained by a random forest-based classifier137. 
More complicated cell-type classification and cell status differentiation 
problems were also studied using deep learning-based QPI approaches 
including cancer cells148,149 or sperm cells. For instance, live sperm 
cells can be classified depending on their status, including normal, 
DNA fragmentation150 and stress-affected status (Fig. 5c)138. Shu et al. 
reported an AI-enabled reagent-free imaging hematology analyzer 
modality that could accurately classify monocytes, granulocytes, lym-
phocytes and subpopulations of lymphocytes like B and T lymphocytes, 
CD4+ and CD8+ T cells based on quantitative phase images (Fig. 5d)142. 
Moreover, Zhang et al. obtained 97% accuracy in the classification of 
benign versus cancer tissue regions with the combination of SLIM and 
CNNs (Fig. 5e)146.

The flexibility of the input data format offers the unique capabil-
ity of the network-based method to process input data with higher 
dimensionality, such as 3D RI maps, time-lapsed and multispectral 
images, which often results in very high classification accuracies. For 
example, by combining 3D RI imaging and deep learning, Park’s group 
obtained >99% accuracy in screening four types of hematological 
disorders128, >95% accuracy in classifying human naïve, memory and 
senescent cells135, 99.9% accuracy in distinguishing 19 species of bacte-
ria30 (Fig. 5f), >99% accuracy in the binary classification of myeloid and 
lymphoid cells and >96% accuracy in differentiating B and T lympho-
cytes, monocyte and myeloid cells29. Wang et al. combined time-lapsed 
images with a pseudo-3D network and presented an automatic coliform 
bacteria detection system that could detect growing colonies (that is, 
colony-forming units) and classify them into correct species within 12 h, 
shortening the US Environmental Protection Agency (EPA)-approved 
method by more than 12 h147. Similarly, by merging deep learning with 
time-lapse holographic imaging, Liu et al. developed a stain-free, rapid 
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and quantitative viral plaque assay technique that can automatically 
detect and count >90% plaque-forming units of vesicular stomatitis 
virus without any false positive within 20 h, saving >24 h and eliminat-
ing the staining process compared with traditional plaque assay151. 
Moreover, with the multispectral holographic imaging system and 
deep learning, Isil et al. achieved >95% accuracy to distinguish four 
types of microalgae (Fig. 5g)141.

Cross-modality image-to-image translation
QPI’s capability of quantitatively measuring the RI distribution of any 
label-free, optically transparent object makes it a suitable tool for 
examining biological samples. However, the direct representation of 
the RI mapping differs from the conventional imaging methods used 

in life science studies. AI-enabled image translation from quantita-
tive RI maps into commonly practiced imaging modalities can bridge  
the gap and provide a transformative way to understand and  
interpret QPI images. Indeed, deep learning methods to transform 
QPI images to other modalities, such as bright-field and fluorescence 
microscopy images, are rapidly emerging. Recent applications include 
transforming label-free QPI images to multiplexed fluorescence stains 
capable of detecting cellular structures, including mitochondria and 
actin, as well as histological stains, such as hematoxylin and eosin or 
immunohistochemical stains. In contrast to segmentation tasks that 
identify different regions within an image, based on pixel-level classi-
fication, image translation is a generative process that involves trans-
forming an input image to a new image in a different domain or style, 
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while preserving its semantic content. Note that the image-to-image 
translation may also facilitate and empower downstream analyses such 
as image segmentation and classification.

The bright-field microscopic imaging of biological samples with 
strong absorbance in the visible light band, such as molds and pollens, 
provides natural contrast for an expert’s interpretation. QPI images 
for these objects, however, are less intuitive. To mitigate this, Wu et al. 
demonstrated a ‘bright-field holography’ method, in which a deep 
neural network was trained to endow the volumetric quantitative phase 
images with an artifact-free bright-field microscopy contrast (Fig. 6a)83. 
It is different from a QPI reconstruction work in the sense that, it not 
only retrieves phase information from a single intensity measurement 
but also colors the samples with natural bright-field contrast. Because 
only one hologram is used to generate the volumetric bright-field 
images, the reported high-throughput method can be especially use-
ful for imaging live 3D biological samples with minimal phototoxicity 
and thermal damage.

Some biological samples, such as tissue sections or cells, typically 
have very weak absorption at visible wavelengths. The interpretation 
of these biological specimens under bright-field microscopy is often 
aided by chromatic staining. A specific example is the inspection of 
histologically stained tissue sections, which plays an important role 
in the diagnosis of diverse human diseases. In this regard, transform-
ing phase images of the tissue sections to the equivalent bright-field 
images after staining, that is, virtual staining, has been reported for a 
wide range of applications. Rivenson et al. presented a demonstration 
of a deep learning-enabled PhaseStain approach, which transforms QPI 
images of various label-free tissue sections into bright-field images 
that are equivalent to the histochemically stained ones (Fig. 6b)152. 
By generating virtually stained images of the tissue slides, the pre-
sented data-driven approach achieved unprecedented simplification 
in sample treatment processes and reduction in time, labor and cost. 
The reported deep learning-based virtual staining approach, which 
was performed using lens-free in-line holography, can also be widely 
adapted to other QPI techniques. In another research, Wang et al. 
reported an unsupervised virtual bright-field and fluorescence stain-
ing method for Fourier ptychography153. A cycleGAN was trained to 
restore the color information of the immunohistochemically stained or 
fluorescence-labeled samples from their monochromatic FPM images 
(intensity or phase).

In addition to tissue examination, the analysis of individual biologi-
cal cells can also benefit from the combination of QPI and AI. Nygate 
et al. demonstrated the virtual staining of sperm cells using holographic 
imaging and deep learning154. The off-axis holographic images of the 
unstained sperm cells were fed into a trained GAN model to predict the 
bright-field images of the sperms as if they had been chemically stained. 
The virtual staining of the sperm cells can lead to the automatic fertil-
ity stratification155, which might provide clinicians with a more natural 
and straightforward way for the morphological analysis of the sperms.

Besides bright-field microscopy, fluorescence microscopy has also 
been used as an essential imaging tool that provides molecular-specific 
contrast for the study of biological systems. However, the utility of 
fluorescence microscopy is limited by certain drawbacks such as pho-
tobleaching, phototoxicity and spectral overlaps, which are difficult to 
overcome in typical implementations. Recent advances in combining 
QPI and AI-enabled cross-modality inference have posted new solu-
tions to these challenges. Guo et al. reported a new approach named 
quantitative label-free imaging with phase and polarization (QLIPP) 
for simultaneous measurement of density, anisotropy and orientation 
of structures in unlabeled live cells and tissue slices156. Multichannel 
2.5D U-Nets were trained to predict the 3D fluorescence distribution 
from label-free QLIPP images (quantitative phase, retardance and 
orientation) or quantitative phase only. A robust and accurate predic-
tion of fluorescence labels of both anisotropic and isotropic structures 
(F-actin and nuclei) in mouse kidneys was demonstrated (Fig. 6c).

Compared to fluorescence imaging, the nondestructive nature 
of QPI makes it advantageous in live cell inspection. Kandel et al. pre-
sented phase imaging with computational specificity (PICS), which 
generates the subcellular specificity that conventionally requires 
molecularly specific labeling, for unlabeled live cells using the com-
bination of QPI and AI54. A trained network inference model was built 
into a real-time acquisition software to predict the DAPI (nucleus) and 
DiI (cell membrane) fluorophores from label-free quantitative phase 
images (Fig. 6d). Then, the inferred fluorescence maps were applied 
back to the QPI data for the real-time measurement of the dry mass 
of nuclei and cytoplasm. Due to the absence of chemical toxicity and 
photobleaching, PICS can perform dynamic imaging of live cells over 
extended periods without cell viability concerns, which offers a quanti-
tative technique for long-term monitoring of individual cellular compo-
nents in biological applications. Furthermore, the deep learning-based 
multiplexed virtual staining approach provides a fast, affordable and 
simplified way to analyze biological samples, by mapping the QPI data 
to fluorescent stains. Jo et al. demonstrated a data-driven technology 
RI2FL for label-free multiplexed microtomography of endogenous 
subcellular structures using deep learning57. The presented RI2FL is 
a scalable framework that can infer multiple subcellular fluorescent 
stains such as mitochondria, actin and nuclei from the 3D RI tomograms 
(Fig. 6e). As RI is an absolute and unbiased intrinsic quantity of the 
biological materials, the approach based on a full 3D modeling of RI 
can be generalized to a broad range of new samples without retraining. 
The performance, reliability and scalability of this technology were 
extensively characterized, and its applications within high-throughput 
single-cell profiling were demonstrated.

Outlook
AI has been fueling biological studies using QPI, enabling time-efficient 
reconstruction, accurate segmentation and classification, and 
cross-modality image transformations. Along with the advancements, 
concerns were raised about potential hallucinations created by a neu-
ral network reconstructing a QPI image, and doubts grew regarding 
the validity of an image translated from a QPI using AI. The successful 
demonstrations so far have pronounced the validity of AI. Rigorous 
analysis has been conducted to address the concerns by quantifying 
the uncertainty of neural networks157,158. As we venture further, it is vital 
to uphold stringent standards in model training and deployment to 
maintain the credibility of AI in QPI studies. This includes the critical 
steps of ensuring that models are trained and deployed on match-
ing datasets, vigilantly avoiding overfitting and, whenever feasible or 
periodically, benchmarking output images against ground truth for 
performance validation. Along a similar direction, it is desirable to 
establish a quantitative benchmark to analyze the uncertainty of using 
AI in QPI. Based on this benchmark, when the uncertainty generated by 
AI reaches a similar or lower level compared to the inter-instrument and 
inter-algorithm variabilities of the conventional methods, the AI-aided 
QPI can be widely adapted to routine applications. Further efforts shall 
be made in two directions: to utilize AI to solve QPI problems that are 
impossible to achieve using conventional methods, and to codesign 
a QPI system with the help of AI. Firstly, AI has the potential to boost 
in vivo QPI for biological samples, which requires imaging through 
scattering mediums like 3D live tissue. For example, coherent imaging 
through scattering media (for example, ground glass, multimode fib-
ers) has been successfully realized by training CNNs that recognize and 
reconstruct objects from speckle patterns159,160. Later, a trained CNN 
generalizable to different medium perturbations was demonstrated 
to successfully predict objects through unseen diffusers in the train-
ing stage161. Recently, RNNs, which have been commonly utilized for 
processing sequential data, were also explored for 2D and 3D QPI84, also 
demonstrating their capability of imaging through strongly scattering 
media162,163. These works highlight the power of AI in reconstructing the 
in-depth features behind the scattering media, which is fundamental to 
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potential future explorations of applying AI and QPI to in vivo biological 
studies that are currently intractable.

Secondly, building a QPI system with AI, or codesigning an imag-
ing system with the help of AI, can be another exciting possibility. 
Recently, data-driven methods have been successfully used in opti-
mizing illumination patterns in Fourier ptychography164–166. Kellman 
et al.164 proposed a data-driven design framework that learns efficient 
LED source patterns while simultaneously relaxing required measure-
ment constraints. More recently, the combination of AI and diffractive 
optics enabled all-optical quantitative phase-to-amplitude mapping 
without the need for a computer167: Mengu et al.167 presented a dif-
fractive neural network168–170, which computes using the light-matter 
interaction on AI-designed successive diffractive layers and free space 
propagation in between, to directly convert the phase information of 
an input object to the intensity distribution at the output plane, at the 
speed of light. The same diffractive neural network platform was also 
used to demonstrate the computer-free, all-optical reconstruction of 
holograms171. The combination of AI-enabled QPI and flow cytometry 
system may potentially expand the applicability by sorting different cell 
types in a label-free manner172,173. These AI-designed QPI systems can 
potentially replace traditional complicated QPI setups and will provide 
new research tools for developing real-time holographic imaging and 
QPI systems that energize different applications.

In conclusion, a synergistic combination of AI and QPI has recently 
gained tremendous success in biological imaging. AI has already proven 
invaluable for both enhancing the performance of QPI and providing 
a way to efficiently interpret the resulting images. These data-driven 
approaches also have promising potential to reduce the time and cost 
in diverse aspects of QPI, leading to the broadening utility of QPI in 
life sciences.
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