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Traditional staining of biological specimens for microscopic imaging entails time-
consuming, laborious, and costly procedures, in addition to producing
inconsistent labeling and causing irreversible sample damage. In recent years,
computational “virtual” staining using deep learning techniques has evolved into a
robust and comprehensive application for streamlining the staining process
without typical histochemical staining-related drawbacks. Such virtual staining
techniques can also be combined with neural networks designed to correct
various microscopy aberrations, such as out-of-focus or motion blur artifacts,
and improve upon diffracted-limited resolution. Here, we highlight how such
methods lead to a host of new opportunities that can significantly improve both
sample preparation and imaging in biomedical microscopy.
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Introduction

Histochemical staining is an integral part of well-established pathology clinical
workflows. Since thin tissue sections are mostly transparent, their features cannot be
adequately observed through a standard brightfield microscope without exogenous
chromatic staining. Another exogenous label commonly used to study biological
specimens is formed by fluorescent probes, which enable highly specific tracking of
sample components (Lichtman and Conchello, 2005) and can be used to monitor, e.g.,
nuclear dynamics (Kandel et al., 2020) and cellular viability (Hu et al., 2022). However, these
labeling processes are time-consuming and laborious, comprising sample fixation,
embedding, sectioning, and staining (Alturkistani et al., 2016). Furthermore, staining is
not a perfectly repeatable procedure considering variations among human operators/
technicians, and therefore the exact distribution and intensity of stains may differ from
one staining operation to the next. Another disadvantage of exogenous staining is, in general,
associated with their destructive nature as well as phototoxicity and photobleaching
(Ounkomol et al., 2018; Jo et al., 2021; He et al., 2022), limiting imaging durations and
compromising the integrity of the samples and their labels over time. Moreover, these
staining procedures introduce distortions to the tissue that prevent further labelling or
molecular analysis on the same regions, which presents a significant limitation in cases where
multiple stains are required (Pillar and Ozcan, 2022).

An alternative approach to measuring the features of transparent biological samples is to
exploit their inherent optical properties, such as autofluorescence or optical path length, in
order to generate a contrast of their constituents. Autofluorescence (Monici, 2005), phase-
contrast (Burch and Stock, 1942) and differential interference contrast (DIC) (Lang, 1982)
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microscopy offer such label-free information. Quantitative phase
imaging (QPI) (Majeed et al., 2017; Park et al., 2018; Majeed et al.,
2019) techniques, which provide precise phase data at the pixel level,
have proven especially useful in biological applications.

Two general obstacles to using these modalities for a wider
range of biomedical applications include: 1) most pathologists or
medical experts have no familiarity with these kinds of images
and cannot effectively interpret them, and 2) they lack the
subcellular and molecular specificity that extraneous labels
provide.

In recent years, largely due to the extraordinary progress in
machine learning capabilities, computational staining techniques
have emerged as an elegant solution to overcome these issues. Deep
learning networks have been built to derive the stain of interest
synthetically—whether chromatic or fluorescent—from label-free
images (Rivenson et al., 2019a; Rivenson et al., 2019b; Kandel et al.,
2020; Bai et al., 2022; Bai et al., 2023).

We believe the rapid expansion of such virtual staining
applications and their integration with other microscopy-
enhancing network models will invariably lead to transformative
opportunities in biomedical imaging.

Virtual staining

Several virtual staining models have already been successfully
designed and deployed, encompassing a variety of organ and
staining types (Rivenson et al., 2019a; Rivenson et al., 2019b;
Rivenson et al., 2020; Zhang et al., 2020; Li et al., 2021; Bai et al.,
2022; Pillar and Ozcan, 2022). It has been shown that tissue biopsy
images obtained with holographic microscopy or autofluorescence
can be used to virtually generate the equivalents of standard
histochemical stains using deep learning algorithms. In many
cases, the networks involve a supervised form of the conditional
generative adversarial network “GAN” (Goodfellow et al., 2020)
(Figures 1A,B), which consists of a generator and a discriminator
competing in a zero-sum setting. Such virtually stained slides have
shown very good fidelity with their histologically stained
counterparts when evaluated by pathologists (Pillar and Ozcan,
2022). This virtual staining technique greatly reduces manual
labor and the costs associated with customary laboratory
preparations of chemically stained tissue.

Recent advances in this emerging field also include virtual
staining of label-free images obtained in vivo (Li et al., 2021) and

FIGURE 1
(A) Example of virtual staining of a QPI image to digitally generate an H&E brightfield image (Rivenson et al., 2019a), scale bar 50 μm, (B) example of
virtual staining of an autofluorescence image to generate a HER2 brightfield image (Bai et al., 2022), scale bar 100 µm, (C) example of inferring special
stains from an existing H&E stain (de Haan et al., 2021), scale bar 50 μm, (D) example of virtual staining of a blood smear quantitative phase image to
digitally generate Wright’s stain (Fanous et al., 2022), scale bar 25 μm, (E) example of virtual staining of QPI cell images with a DAPI nuclear stain
(Kandel et al., 2020), scale bar 25 µm.
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stain-to-stain transformations, e.g., generating Masson’s trichome
stain from the image of hematoxylin and eosin (H&E) (de Haan
et al., 2021) stained tissue, as shown in Figure 1C, and even blending
various stains into an intelligent amalgam for diagnostic
optimization (Zhang et al., 2020).

Virtual staining has also been used on label-free images of
blood smears to artificially generate the Giemsa (Kaza et al.,
2022) or Wright’s stain (Fanous et al., 2022) (Figure 1D), which
are commonly used to diagnose leukocyte and erythrocyte
disorders. Extension of virtual staining to various fluorescent
probes has also been developed to specifically detect subcellular
structures of interest without the need for fluorescent tags
(Ounkomol et al., 2018; Kandel et al., 2020; Jo et al., 2021; He
et al., 2022; Hu et al., 2022), with deep neural networks involving
mostly U-Net architectures (Kandel et al., 2020). In one such
experiment, the growth of the nucleus and cytoplasm of
SW480 cells was assessed over many days by applying the
computed fluorescence maps back to the corresponding QPI
data (Kandel et al., 2020) (Figure 1E).

Another study used virtual staining to generate semantic
segmentation maps from computationally inferred fluorescence
images in live, unlabeled brain cells that were subsequently
utilized to decipher cellular compartments (Kandel et al., 2021).
The time-lapse development of hippocampal neurons was further
studied using these synthetic fluorescence signals, emphasizing the
connections between cellular dry mass generation and the
movements of biomolecules inside the nucleus and neurites. This
technique allowed for continuous recordings of live samples without
deleterious fluorescent elements.

Table 1 provides an overview of some of these virtual staining
approaches, including the tested sample types and the specific
advantages they offer in addition to the cost, labor, and time
savings compared with traditional chemical staining methods.

Discussion

Over the past century, light microscopy has undergone a
remarkable and profound transformation. It has transitioned
from being predominantly descriptive and qualitative to
becoming a potent tool capable of uncovering novel phenomena
and elucidating intricate molecular mechanisms through a
synergistic visual and quantitative approach. One key driving
factor behind these advancements has been the development of
numerous immunohistochemical (IHC) stains that effectively
highlight specific epitopes within cells. These IHC stains have
significantly enhanced diagnostic capabilities in research and
clinical pathology. However, in challenging cases, several IHC
stains are often employed, necessitating the use of multiple tissue
slides for analysis. This becomes a bottleneck as tissue biopsies are
becoming smaller in size, and there is a growing need to harness new
technologies that can extract more information from limited tissue
samples. With its non-destructive nature, alternative label-free
optical modalities, when combined with virtual staining, hold the
potential to revolutionize the histology field by enabling multiple
stains from a single tissue section. This advancement opens doors for
more accurate diagnosis, even when working with relatively small
tissue fragments. Furthermore, a notable decrease in required
reagents and chemicals, including multiple specific antibodies,
can prove highly advantageous for small laboratories that lack
the financial means to maintain an ever-expanding inventory of
diagnostic antibodies.

The overall processing time for a typical IHC stain typically
spans a couple of days. Nevertheless, certain clinical situations
such as transplanted organs with suspected rejection or rapidly
growing tumors necessitate a significantly expedited pathological
report. As for the virtual staining of whole slide images (WSI), the
latest cutting-edge techniques can accomplish this process within

TABLE 1 Different virtual staining methods with their applications, tested samples and specific added benefits.

Virtual staining
application

Virtual staining type Tested samples Benefits*

Clinical use Label-free to colorimetric
histology stains

Salivary gland, thyroid, liver, lung, kidney Rivenson
(2018), carotid Li et al. (2020); Zhang et al. (2022a),
ovarian Meng et al. (2021) and skin tissue Rivenson
et al. (2019a)

Uniform and repeatable staining, removal of human-
induced staining artifacts, permits digital stain
multiplexing on the same tissue section

Label-free to
immunohistochemical (IHC)
stains

Breast Bai et al. (2022) and gastric tissue Hong et al.
(2021)

Label-free biomarker for diagnostics/prognostics,
tumor-stroma measurements

Label-free in vivo virtual staining Skin tissue Li et al. (2021) Noninvasive, biopsy-free staining of skin tissue

Label-free to cytology stains Blood smears Fanous et al. (2022); Kaza et al. (2022)
and sperm cells Nygate et al. (2020)

Simpler workflow, quantitative cell properties, less
toxicity

Enhanced diagnosis Stain-to-stain transformations Kidney tissue de Haan et al. (2021) Additional contrast to tissue components, highlights
cells absent in deeper sections

Digital stain blending Kidney tissue Zhang et al. (2020) Optimized diagnosis, digital creation of new types of
stains

Research Label-free to fluorescent stains Colorectal cancer cells Kandel et al. (2020), HeLa Jo
et al. (2021) and CHO cells He et al. (2022); Hu et al.
(2022), embryonic kidney cells Ounkomol et al.
(2018), and viruses Goswami et al. (2021)

Reduced photodamage, live measurements, high-
throughput

*All virtual staining methods reduce cost, waste, labor, and assay time.
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minutes. Customizing the image acquisition system and digital
processing hardware could further accelerate this operation and
simplify the whole measurement process. For instance, it has
been shown that GAN networks can be constructed and trained
to deblur out-of-focus images with high reliability in frames with
axial offsets of up to +/− 5 µm from the image plane (Luo et al.,
2021). To accelerate the tissue imaging process, which often
consists of frequent focus adjustments during the scanning of
a WSI, cascaded networks have been assembled to first restore the
sharpness of defocused images that randomly appear during the
slide scanning process, and then digitally perform virtual staining
on these autofocused images (Zhang Y. et al., 2022). This two-
step tactic enabled by a cascade of autofocusing and virtual
staining neural networks is an example of how deep learning
can be used to enhance not only the sample preparation and
staining processes, but also the measurement, i.e., the image
acquisition step.

Similarly, digital staining could potentially be coupled with the
recently devised motion-blur reconstruction method named
GANscan (Fanous and Popescu, 2022; Rivenson and Ozcan,
2022). This technique scans tissue slides in a continuous manner
at 30-times the speed of traditional microscopy scanning, and
subsequently corrects for the speed-induced motion-blur effect
through a GAN-trained network. If the inputs are images
generated by a label-free contrast mechanism such as QPI or
autofluorescence, the results of the model could thereafter be
digitally stained. This, again, could constitute a cascaded neural
network architecture, first handling the deblurring operation due to
rapid scanning of the tissue sample, and then virtual staining of the
deblurred samples from label-free endogenous contrast to a desired
virtual stain.

Another deep learning operation that can be advantageously
paired with virtual staining is the enhancement of spatial resolution.
It has been shown that deep learning models can be trained to
convert diffraction-limited confocal microscopy images into super-
resolved stimulated emission depletion (STED) microscopy
equivalent images (Wang et al., 2019). To our knowledge, a
concept that has not yet been realized is achieving super-resolved
quantitative phase imaging through the supervised learning of
fluorescent-to-phase modalities, flipping the typical direction of
transformation using labeled samples. Coupling such a virtual
super-resolution network with digital staining could, in principle,
allow one to obtain super-resolution brightfield H&E images from
ordinary label-free QPI acquisitions.

Overall, virtually transforming one imaging modality into
another, along with advances in deep learning tools, has been the
boon of many meaningful microscopy innovations in recent years.
And there are multiple circumstances in which such a strategy of
cross-modality image transformations is still unexplored or may
benefit from further research.

Models may be designed to fix the various imperfections of a
sample, whether optical or physical, and could thereafter be virtually
stained. A consecutive GAN network would first handle artifact
reconstructions/corrections, and then the stain of choice would be
digitally rendered. It is also worth noting that implementing a
system that enables rapid and consistent imaging, correction, and
virtual staining of tissue samples would significantly enhance stain
uniformity/repeatability. This is particularly crucial considering the

lab-based biases present in extensive and reputable databases, such
as the digital image collection of The Cancer Genome Atlas (TCGA)
(Dehkharghanian et al., 2023).

The cardinal challenges to such strategies are twofold: first, a
copious amount of data is required for acceptable results. Enough
instances need to be included to handle the various anomalies and
differences of each case; second, as this is primarily a supervised
learning approach, the image pairs need to be very well registered,
which might be tedious and require manual inspection and quality
assurance during the training data preparation (which is a one-time
effort).

Conclusion

Virtual staining has demonstrated powerful capabilities using
various modes of microscopy and will likely be implemented more
and more in different bioimaging scenarios, steadily modernizing
the industry altogether. The ability of virtual staining to accurately
highlight tissue morphology while conserving tissue, reducing
costs, and expediting turnaround time has the potential to
revolutionize traditional histopathology workflows. However,
for a truly disruptive virtual staining-based digitization of the
well-established branches and subspecialties of pathology to
occur, the technologies spanning both ends of the histological
process (from sample acquisition to physician examination) need
to be not only highly ergonomic, comprehensive and consistent,
but also affordable and compatible with different forms of
microscopy and slide scanner devices that are commercially
available.
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