
ARTICLE

Eliciting the impacts of cellular noise on metabolic
trade-offs by quantitative mass imaging
A.E. Vasdekis1, H. Alanazi1, A.M. Silverman2, C.J. Williams3, A.J. Canul1, J.B. Cliff4, A.C. Dohnalkova4 &

G. Stephanopoulos2

Optimal metabolic trade-offs between growth and productivity are key constraints in strain

optimization by metabolic engineering; however, how cellular noise impacts these trade-offs

and drives the emergence of subpopulations with distinct resource allocation strategies,

remains largely unknown. Here, we introduce a single-cell strategy for quantifying the trade-

offs between triacylglycerol production and growth in the oleaginous microorganism Yarrowia

lipolytica. The strategy relies on high-throughput quantitative-phase imaging and, enabled by

nanoscale secondary ion mass spectrometry analyses and dedicated image processing,

allows us to image how resources are partitioned between growth and productivity. Enhanced

precision over population-averaging biotechnologies and conventional microscopy demon-

strates how cellular noise impacts growth and productivity differently. As such, subpopula-

tions with distinct metabolic trade-offs emerge, with notable impacts on strain performance

and robustness. By quantifying the self-degradation of cytosolic macromolecules under

nutrient-limiting conditions, we discover the cell-to-cell heterogeneity in protein and fatty-

acid recycling, unmasking a potential bet-hedging strategy under starvation.
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The rewiring of metabolic networks by synthetic biology or
adaptive evolution can induce trade-offs between pathways
maintaining balanced growth and the production of spe-

cific metabolites1. Similar to a Pareto front2, these trade-offs can
be non-optimal with potential implications for the maintenance
of genetic diversity3 and co-optimization of production titers and
yields by metabolic engineering4. While these trade-offs are
challenging to predict given the underlying interactions between
distal and often seemingly unrelated genes5, biotechnologies, such
as mass spectrometry, can quantify how resources are allocated to
growth and the production of specific metabolites6. These
screening approaches, however, operate in a population-
averaging mode, and thus cannot detect the presence of meta-
bolic subpopulations that can emerge due to cellular noise and
cytosolic stochastic phenomena7–11. These subpopulations can
have a significant impact on clonal populations, such as the
emergence of phenotypically different subpopulations offering
bet-hedging survival strategies under stress12–14. Specific to
metabolic engineering, overproducing subpopulations with dis-
tinct industrial interest can emerge15,16, while underproducing
subpopulations can be indicative of reduced robustness under
changing environmental conditions9,17.

Detecting metabolic subpopulations requires single-cell reso-
lution, which, for live cells, can be attained by conventional
optical microscopy. However, conventional microscopy typically
informs about the cell and product volumes, which, in an energy-
balance context, only partially contributes to the cell’s enthalpy18.
Further, in a mass-balance context, conventional optical methods
assume that biomass and product densities are homogeneous
between clonal cells and independent of the growth conditions,
which, as demonstrated here, is not generally valid. More
recently, suspended microfluidic resonators19 and cantilever
picobalances20 have emerged as a means to determine the mass of
single-cells. Despite their enhanced sensitivity and temporal
resolution, these approaches determine the average mass of
individual cells and, as such, are unable to detect and quantify
specific intracellular metabolites. Therefore, despite the con-
siderable recent progress in single-cell methods21–23, metabolic
trade-off phenotyping with single-cell resolution remains an
important, yet unmet, biotechnology target.

To meet this target, we adapt quantitative phase imaging24–29

to the phenotyping of how resources are partitioned between
growth and productivity, and thus the resulting trade-offs
between these two metabolic objectives with single-cell resolu-
tion (Fig. 1a). For this, we use triacylglycerol (TAG) production
in Yarrowia lipolytica as a model process6 (Fig. 1b). We select Y.
lipolytica, an obligate aerobic, oleaginous yeast for its importance

in the production of biofuel precursors. To this end, Y. lipolytica
has recently attracted substantial attention due to its compatibility
with genetic engineering and innate capability to accumulate
substantial amounts of TAGs6,30,31.

By capturing the optical-phase delay (ΔΦ) of the cell cytosol
and TAG loaded lipid droplets (LDs), we obtain the corre-
sponding dry-mass values, and thus the metabolic trade-offs
between growth (cytosol) and productivity (TAGs). We confirm
the validity of this approach with nanoscale secondary ion mass
spectrometry (NanoSIMS)32 and report that quantitative mass
imaging exhibits more than 55% higher precision than conven-
tional microscopy in growth and productivity phenotyping. With
dedicated image processing, we perform growth-productivity
bivariate analyses33 and discover that the growth and productiv-
ity robustness to cellular noise are not interrelated under various
conditions. As such, subpopulations exhibiting different metabolic
trade-offs emerge with significant impacts on the overall perfor-
mance of clonal populations. These impacts include a previously
unobserved cell-to-cell heterogeneity in macromolecule recycling
under starvation, possibly indicating the presence of a bet-hedging
strategy under nutrient-limiting conditions.

Results
Imaging strategy. To perform quantitative mass imaging, we
introduced 2 µL of a growing Y. lipolytica culture between two
coverslips without further processing. The sample was subse-
quently transferred to an automated microscope equipped with
quantitative phase and fluorescent imaging (Methods). For
quantitative phase imaging, we employed spatial light interference
microscopy (SLIM) by projecting the phase-contrast intensity
images onto a spatial light modulator and applying additional
phase-delays to the non-diffracted wavefront (background) with
respect to the diffracted wavefront (cell)24. In this way, we were
able to capture both the size and optical-phase delay of the cell
cytosol (ΔΦcytosol) and TAG product (ΔΦTAG) at the single-cell
level (Figs. 1b and 2a).

Subsequently, we converted ΔΦcytosol and ΔΦTAG to their
corresponding dry-mass (DM) values, thus attaining the cell-to-
cell lipid-content heterogeneity in both volume and DM ratios
(Fig. 2). To complete this conversion, we hypothesized that the
cell cytosol is primarily comprised of proteins and nucleic acids,
dispersed with LDs that are loaded with TAGs at a negligible
protein content. We confirmed this hypothesis by characterizing
the cytosolic and LD elemental composition with NanoSIMS32.
Indeed, after exposure to U-13C glucose at various carbon-to-
nitrogen ratios (C/N) and durations (Methods) using two
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Fig. 1 Metabolic trade-offs by quantitative mass imaging. a Schematic illustrating substrate uptake and resource partitioning to growth and production, as
well as the underlying trade-offs between these two metabolic objectives. b Quantitative phase-imaging (QPI) enables the independent localization (x,y,z)
and phase-delay quantification of the cell cytosol (ΔΦcytosol) and TAG loaded lipid droplets (ΔΦTAG). ΔΦcytosol and ΔΦTAG are subsequently converted to
their corresponding dry-mass values, enabling trade-off phenotyping between growth and TAG production
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independent cultures, we found the cytosol to be uniformly
comprised of naturally abundant nitrogen (14N), as illustrated in
Fig. 3a. Similarly, LDs, which were co-localized by Transmission
Electron Microscopy (TEM) via osmium staining and NanoSIMS
(Supplementary Fig. 1), were found to be comprised primarily of
13C and a comparable 14N content to the extracellular back-
ground (Fig. 3b).

Image analysis. To convert ΔΦcytosol to the corresponding DM,
we employed the protein-specific refractive index increment24–28

(Methods). However, unlike the cell cytosol that can be
approximated as an aqueous protein solution, glycerolipids self-
assemble into spherical LDs34, which for Y. lipolytica are rela-
tively homogeneous with approximately 90–95% TAGs35. As
such, it is challenging to apply the specific refractive index
increment to LDs. To address this, we employed the experi-
mentally determined LD refractive index and applied the
Clausius-Mossotti equation to determine the number-density of
TAG molecules (NTAG)36. NTAG was subsequently converted to
the corresponding LD mass density (Methods). For Y. lipolytica,
we considered a mixture of triolein, stearin, tripalmitin,

trilinolein, and tripalmitolein35, yielding a polarizability para-
meter of 1.048 × 10−22 cm−3 and 1.437 × 10−21 gr molecular
weight (Methods). Generally, the polarizability and molecular
weight parameters are not expected to vary significantly under
typical growth conditions. Indicatively for Y. lipolytica, the mix-
ture polarizability and molecular weight change by approximately
0.45% and 0.28% under N-limited and C-limited conditions using
glucose as the sole carbon source31. For a wider range of sub-
strates and growth durations, we found that the mixture polar-
izability and molecular weight parameters change on average by
0.6% (1.8% maximum change) and 0.6% (1.6% maximum
change), respectively, for various Y. lipolytica strains (see Meth-
ods and Supplementary Tables 1 and 2 for further information).

To determine the ΔΦcytosol and ΔΦTAG of individual cells, we
processed the acquired images and localized the cell-contour and
LDs via their ΔΦ levels without any fluorescent labeling.
However, while the cytosol-to-background contrast was adequate
for cell-segmentation37, the LD-to-cytosol contrast (i.e., ΔΦTAG/
ΔΦcytosol) was insufficient for automated thresholding.
To overcome this, we also collected phase-contrast intensity
images, where we additionally modulated the cytosol and LD
diffracted wavefronts24 by π/2 and π (Methods). Cross-correlating
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Fig. 2 Quantitative mass imaging and cell-to-cell lipid-content heterogeneity. a An optical-phase image of individual Y. lipolytica cells labeled from (i) to
(iv); arrows indicate the cytosolic LDs, and scale-bar is displayed in radians. b Histogram of the lipid-content in % volume (VTAG/Vbiomass) and dry-mass
(DMTAG/DMbiomass) ratios for the cells shown in a; importantly, the single-cell volumetric lipid-content is seen to scale inversely with the DM lipid-content
specifically for cells (i), (ii), and (iii)
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Fig. 3 Elemental composition of Y. lipolytica. a NanoSIMS images of the MTYL038 strain at two C/N growth conditions for 6, 15, and 100 h (Methods); the
cytosolic pools of naturally abundant 14N and the LD content of 13C are highlighted in red and green, respectively. b Box-plots of 12C14N/12C13C ratio of the
cytosolic LDs droplets (red), the cytosol excluding the LDs (blue), and the extracellular background (yellow) for 40 individual single-cell and single-LD
observations, for cells sampled at C/N:15 and C/N:40 at 6, 15, and 100 h (Methods). Specifically, nC/N: 15, 6 h = 8, nC/N: 15, 15 h = 2, nC/N: 15, 100 h = 2, nC/N:
40, 6 h = 12, nC/N: 40, 15 h = 4, nC/N: 40, 100 h = 12. Box-plots represent the 10th, 25th, 75th, and 90th percentile, whiskers represent the 5th and 95th
percentile, while the median and mean values of the ensemble distribution are indicated by the horizontal line and sphere, respectively
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the resulting images suppressed the cytosolic signal and thus the
non-specific contributions to the LD localization (Fig. 4). Overall,
this approach yielded greater than 98% agreement with
fluorescence-based LD localization26 (Supplementary Fig. 2), and
accelerated image processing at rates that enabled more than 103

single-cell observations per experimental condition.

Comparison with conventional microscopy. Using phase-ima-
ging, we compared the volume with the TAG number-density of
approximately 25,960 individual LDs of single Y. lipolytica cells
grown under 7 different conditions, including 3 independent
replicate cultures per condition (Methods). We found that the LD

volume (VTAG) correlated positively but moderately with the TAG
number-density (NTAG) at various growth and strain conditions,
with an overall Spearman correlation coefficient of
ρ= 0.65 (p < .001) (Fig. 5a). As such, NTAG and VTAG did not
exhibit identical dynamics at all timepoints. For example, during
the 17–28 h period of MTYL038 at C/N: 150, both the NTAG

and VTAG increased (one-sided t-test, p= 0.02 for both variables).
In contrast, during the 76–124 h period, strong evidence sup-
ported that VTAG increased in volume (one-sided t-test, p= 0.01);
however, similarly strong evidence was not detected for NTAG

(one-sided t-test, p= 0.2) (Supplementary Fig. 3). Under the same
conditions, we imaged the volume and dry-mass of approximately
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Fig. 4 Image processing by spatial cross-correlation. a The quantitative-phase image shown in Fig. 2a overlaid with the thresholded areas that
exhibit phase-delay values (ΔΦ) comparable to the LDs; the thresholded areas (red) include both parts of the cytosol and the LDs, given their similarity in
ΔΦ. b The spatial cross-correlation of the π/2 and π phase-modulated intensity images eliminated the cytosolic background contribution, enabling the
error-free localization of the LDs by intensity thresholding (c)
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droplet (LD) as a function of the LD volume for various Y. lipolytica strains and growth conditions (Methods); red line indicates the interquartile range
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similar scatter plot for the non-TAG cell dry-density as a function of the cell volume with the red line indicating the IQR for a cell volume of 100 µm3; inset
illustrates the number of observations (n), the Spearman correlation coefficient (ρ), yielding p < 0.001. The data represent the ensemble of 5 different
experimental conditions, each performed in triplicates (see Methods), including: MTYL03817hr (nA = 400, nB = 416, nG = 535 single-cell observations),
MTYL03828hr (nA = 664, nB = 566, nG = 686), MTYL03852hr (nA = 524, nB = 584, nG = 762), MTYL03876hr (nA = 471, nB = 825, nG = 695),
MTYL038100hr (nA = 633, nB = 616, nG = 941), MTYL038124hr (nA = 655, nB = 793, nG = 894), and Po1g100hr (nA = 685, nB = 748, nG = 677), yielding a
total of 13,770 single-cell and 25,960 single LD observations
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13,770 individual Y. lipolytica cells. Through this analysis, we
found that the cell dry-density correlated negatively but moder-
ately with cell volume (Spearman correlation coefficient ρ=−0.6,
(p < .001, Fig. 5b), and largely independent of growth and strain
conditions (Supplementary Fig. 4).

In addition to the weak correlations, we noted significant
variability in the TAG product and cell density relationships with
their sizes (Fig. 5). Indicatively, a cell volume of 100 µm3

corresponded to a median dry-density of 0.37 pg/µm3 with a 0.1
pg/µm3 interquartile range (IQR) (Fig. 5b). Similarly, an LD volume
of 0.1 µm3 corresponded to a median TAG number density of 3.4 ×
1032 µm−3 with an IQR of 1.4 × 1031 µm−3 (Fig. 5a). These levels of
variability are indicative that the size-density relationship for both
the TAG product and non-TAG biomass are subject to cellular
noise and thus cell-to-cell heterogeneity in a clonal population. In
addition to the significant biophysical insight, this finding unmasks
the challenge in attaining a global, deterministic, correction factor to
the size-density relationship.

Both the weak correlations and increased variability in the
density-size relationship for TAG product and non-TAG biomass
unmask potential precision limitations of conventional, volu-
metric microscopy in phenotyping growth and productivity at the
single-cell level. These limitations pertain both to precision
phenotyping of the population response and underlying cell-to-
cell phenotypic heterogeneity (Fig. 2b). For Y. lipolytica
specifically, we determined an average error of 55% in TAG
content phenotyping, which exhibited statistically significant
differences between specific strain and growth-conditions (Sup-
plementary Fig. 5, Supplementary Table 3).

Growth-productivity trade-offs. To probe the growth-
productivity trade-offs with single-cell resolution, we performed

a bivariate analysis of growth (non-TAG cell biomass) and pro-
ductivity (LD TAG-content) for two genetically similar strains
(MTYL038 and Po1g, Methods). Specifically, we compared the
growth and TAG production at a C/N of 150 for MTYL038 at the
17, 100, and 124 h timepoints (i.e., MTYL03817, MTYL038100,
and MTYL038124), and of Po1g at 100 h (Po1g100). The growth
curves for both strains are shown in Supplementary Figs. 6 and 7.

This analysis, illustrated in the 2D probability distributions of
Fig. 6a, revealed the distinct resource allocation strategies per
medium and strain conditions. The early timepoint of 17 h (mid-
exponential growth phase, Supplementary Fig. 6) programmed
MTYL038 to allocate resources primarily to growth, as mani-
fested by the increased probability of high non-TAG biomass and
low TAG macrostates35. In contrast, the later 100 h and 124 h
timepoints (stationary phase, Supplementary Fig. 6) programmed
MTYL038 to alter its growth-productivity trade-off strategy,
manifested by the increased presence of high TAG and low non-
TAG biomass macrostates (Fig. 6a). This shift in metabolic trade-
offs is attributed to the onset of stationary phase and growth
cessation, which typically coincides with the depletion of N levels.
Further, a distinct difference between the two strains
(MTYL038100 and Po1g100) was detected. TAG production in
MTYL038100 was manifested through sporadic high-product and
low-biomass (non-TAG) subpopulations (Fig. 6a), which is
indicative of increased cellular noise, as further detailed in the
following paragraph. In contrast, Po1g100 displayed more
balanced TAG production. This is evidenced by the co-
increased levels of high TAG and non-TAG biomass macrostates
(shown in red in Fig. 6a) and the more evenly distributed
subpopulations along both the TAG product and non-TAG
biomass axes (shown in purple in Fig. 6a).

To further quantify the impact of cellular noise on the growth-
production trade-offs, we determined the cell-to-cell
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Fig. 6 Single-cell growth-productivity trade-offs. a 2D probability distributions illustrating the resource allocation strategies between non-TAG biomass and
TAG product for MTYL038 grown at C/N:150 for 17, 100, and 124 h, and Po1g at C/N:150 for 100 h. Each distribution represents the ensemble of three
biological replicates, and is portrayed with the color scales noted in the figure. b The cellular noise in non-TAG biomass (red) and TAG product (blue)
quantified via the cell-to-cell phenotypic heterogeneity and the robust coefficient of variation (rCV) for MTYL03817hr (M17), MTYL03828hr (M28),
MTYL03852hr (M52), MTYL03876hr (M76), MTYL038100hr (M100), MTYL038124hr (M124), and Po1g100hr (P100). Bars and error-bars indicate the mean
and standard-error between three biological replicates, respectively. Under all tested conditions, TAG noise exhibited higher values than growth noise
(single-sided t-test between each replicate’s rCV, p < 0.025 for all reported conditions). Further, strong evidence supported that production noise is
affected by time following the onset of TAG production (28 h) for MTYL038 (one-way ANOVA, F(4,10)= 4.73 and p= 0.02); no such evidence was
detected for growth noise (one-way ANOVA, F(4,10)= 0.92 and p= 0.5). TAG and non-TAG rCV for M100 and P100 were also found to be different
(paired-sample t-test, p= 0.05 for both TAG and non-TAG). Inset plots the dependence of the product rCV on the non-TAG biomass rCV, yielding a
Spearman correlation coefficient of 0.14 (p= 0.76). Source data of Fig. 6a are provided as a Source Data file
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heterogeneity in non-TAG biomass and TAG content via the
robust coefficient of variation (rCV). Overall, TAG production
noise exhibited higher levels than growth noise for all tested
experimental conditions (Fig. 6b). This is not surprising given
that metabolic networks are thought to have evolved optimal flux
distributions for balanced growth1,38. Further, growth noise was
found to be generally decoupled from production noise, as shown
in the inset of Fig. 6b. For example, following the onset of TAG
production (28 h, see later sections), TAG production noise in
MTYL038 displayed a statistically significant dependence on time;
however, no such evidence was found for growth noise during the
same period (Fig. 6b). Interestingly, Po1g100 exhibited a lower
TAG production noise than MTYL038100 (rCVP100-TAG= 0.87 ±
0.04 and rCVM100-TAG= 1.30 ± 0.12, mean ± standard error
between 3 biological replicates). Given the inverse relationship
between robustness and noise (R= 1−rCV)39, this indicates that
this strain exhibits higher production robustness against intra-
cellular and extracellular perturbations (Fig. 6b). This was likely
triggered by the medium supplementation with leucine (Meth-
ods), a lipogenesis effector amino acid that activates putative
leucine degrading and acetyl-CoA-generating pathways40–42.

Capturing the impacts of cellular noise on growth and
productivity by population-averaging biotechnologies is challen-
ging23. This is indicated, for example, by strong evidence that cell
densities (OD, Supplementary Fig. 6) of MTYL038 differ between
the 17 h, 28 h, and 52 h timepoints (one-way ANOVA, F(2,6)=
130.3, p < 0.001). In contrast, such evidence was not found for
growth robustness9 (one-way ANOVA F(2,6)= 1.41, p= 0.32), as
uniquely quantified by mass imaging. Further, cellular noise not
only impacts robustness but can also have significant consequences
on the overall performance of a clonal population. As such,
population-averaging can potentially limit the precision in strain
classification, especially for genetically similar strains with reduced
phenotypic distance between them. To this end, we probed the
productivity (i.e., TAG content per unit volume and time) at
the single-cell level using quantitative mass phenotyping. The

productivity comparisons of MTYL03817 with MTYL03852, and
MTYL038124 are illustrated in Fig. 7a (and Supplementary Fig. 8) as
an example. Using the Kolmogorov–Smirnov (KS) statistic to
account for cell-to-cell heterogeneity43–45, we determined that the
phenotypic distances of the [MTYL03817–MTYL03852] and
[MTYL03817–MTYL038124] pairs do not differ (Fig. 7b). In
contrast, the Euclidian-average distances46, essentially simulating
the readout of conventional, population-averaging methods, were
found to be different for the same pairs (Fig. 7b). We attribute this
inconsistency to the enhanced precision of single-cell quantitative
mass imaging in describing more accurately the origins of
overproduction in MTYL03852 and MTYL038124. Specifically, while
the most likely phenotypes of both MTYL03852 and MTYL038124
exhibited a notable productivity increase in comparison to
MTYL03817, MTYL038124 additionally exhibited a significant
overproducing subpopulation (indicated by arrows in Fig. 7a).
The presence of these subpopulations was uniquely captured by
single-cell quantitative-mass imaging, thus enabling enhanced
precision in comparison to population-averaging biotechnologies.

Trade-offs and heterogeneity under starvation. An unexpected
metabolic strategy was unmasked for MTYL038 when transferred
from rich YPD to a defined medium of C/N: 150 (Methods).
During cell-doubling (Supplementary Fig. 6), cell biomass (non-
TAG) decreased continuously with the TAG content con-
tinuously increasing, especially after the onset of stationary phase
(28 h) (Fig. 8a and Supplementary Fig. 9). In contrast, both cell
biomass (non-TAG) and the TAG product decreased notably
(Fig. 8a and Supplementary Fig. 9) during stationary phase.
Specifically, non-TAG biomass decreased (one-sided t-test p=
0.03) during the 52–124 h period (Supplementary Fig. 6). Simi-
larly, the TAG product decreased (one-sided t-test p= 0.05)
during the 100–124 h period (Supplementary Fig. 6). These
findings suggest the activation of an autophagy-based central
catabolic process for cell non-TAG biomass47 and stored TAGs48

a b

0.0 0.3 0.6 0.9
0

15

30

90
0

15

30
0

15

30

Single-cell productivity (g/L/h)

MTYL038/17h

R
el

at
iv

e 
fr

eq
ue

nc
y 

(%
)

MTYL038/52h

MTYL038/124h

[M
52

]-
[M

17
]

[M
12

4]
-[

M
17

]

0.0 0.2 0.4 0.6 0.8 1.0

Phenotypic distance

Euclidean-
averageKS

Fig. 7 Strain classification by quantitative mass imaging. a Single-cell productivity distributions and concatenated non-linear fits for MTYL03817 (fit: dF=
56, adj-R2= 0.99, red-x2= 1.71), MTYL03852 (fit: dF= 56, adj-R2= 0.94, red-x2= 3.53), and MTYL038124 (fit: dF= 56, adj-R2= 0.95, red-x2= 1.75).
Bars and error-bars indicate the mean and standard-error between three biological replicates respectively, while gray arrows indicate the presence of
overproducing MTYL038124 subpopulations. In red, the 95% confidence band for each concatenated fit is shown. Strong evidence supported the temporal
dependence of productivity at these timepoints (one-way ANOVA, F(2,6) = 116 and p < 0.001). b The Kolmogorov-Smirnov (KS) and Euclidian-average
distances of the [MTYL03817–MTYL03852] and [MTYL03817–MTYL038124] pairs. Bars and error-bars indicate the mean and standard-error between
three biological replicates, respectively. Strong evidence supported that the Euclidean-average distances between pairs are different (paired-sample t-test,
p= 0.02); no such evidence was observed for the KS distances (paired-sample t-test, p= 0.27). Source data are provided as a Source Data file
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following the completion of cell doubling and during late sta-
tionary phase, respectively. Importantly, similar conclusions
could not be deduced by conventional, volumetric microscopy
(Supplementary Fig. 10). This is because, no evidence indicating
that cell size changes between the 52 h and 124 h timepoints
(paired-sample t-test, p= 0.2) was found, contrary to the non-
TAG cell dry mass at the same timepoints (paired-sample t-test,
p= 0.06). TAG hydrolysis and the breakdown of cytosolic com-
ponents by autophagy have been previously shown to be inter-
related under nutrient deprivation conditions49. We anticipate
similar nutrient-limiting conditions in our experiments during
late stationary phase35. With mass imaging, we determined the
relative fluxes in single living cells between non-TAG biomass
and TAG catabolic pathways, with the two not exhibiting sig-
nificant differences (paired-sample t-test, p= 0.02) (Fig. 8a). This
finding indicates that Y. lipolytica maintenance costs under
nutrient starvation induce comparable degradation rates between
protein-based cellular components and free fatty acids via TAG
hydrolysis.

Further, single-cell resolution unmasked that these catabolic
processes do not occur homogeneously within the clonal
population, but that they rather exhibit a cell-to-cell hetero-
geneous response. This is illustrated in Fig. 8b plotting the decile
differences for TAG and non-TAG at 100 h and 52 h as a function
of the corresponding deciles at 124 h. The decile differences were
computed using the shift function and the Harrell-Davis quantile
estimator and averaged over the three biological replicates50,51.
Specifically for TAG, a non-linear shift function was identified
(Fig. 8b). This non-linearity indicates that not all deciles (and
thus the underlying clonal subpopulations) respond similarly to
nutrient limitation (100–124 h). Further, strong evidence sup-
ported that only obese subpopulations (7th–9th decile) undergo
significant TAG-content decrease (Fig. 8b). In contrast, non-TAG
biomass exhibited only a moderate asymmetry of lower
magnitude than TAG, with the biomass subpopulations of the
2nd to 4th decile undergoing a statistically significant decrease
(Fig. 8b) during stationary phase (52–124 h). These findings
indicate that while both TAG and non-TAG autophagy-based

catabolism exhibit cell-to-cell heterogeneity, TAG hydrolysis
appears to exhibit a stronger non-linear response among
subpopulations. Our discovery of cell-to-cell heterogeneity in
autophagy-based macromolecule recycling offers unique insight
into the existence of sporadic TAG and non-TAG biomass
subpopulations, which could potentially act as a bet-hedging
survival strategy14,52 under nutrient limitation.

Discussion
Single-cell biology has led to a plethora of unexpected dis-
coveries7–13,15, primarily catalyzed by advances in quantifying the
growth-rate, genome, transcriptome, and protein content of
individual cells19–23,53–56. However, the absence of suitable
methods for probing how single-cells balance resources between
metabolic pathways has masked the impacts of cellular noise on
metabolic trade-offs. As such, it remains unknown whether
cytosolic or extracellular heterogeneity and underlying stochastic
phenomena impose the emergence of subpopulations with dis-
tinct resource allocation strategies between growth and the pro-
duction of specific metabolites.

To address this shortcoming, we developed a single-cell mass
phenotyping strategy and applied it to quantify the trade-offs
between TAG production and growth in Y. lipolytica. The strat-
egy requires only 2 µL of a cell suspension with no further pro-
cessing, such as washing or staining. With this approach, we
attained ~40 cells/min throughput rates for low cell densities and
up to ~80 cells/min at increased cell densities. In both cases, cells
are imaged in their native medium, thus enabling minimal per-
turbation to the culture during screening. Using quantitative-
phase imaging (Fig. 1), we captured and converted the optical-
phase of the cytosol and TAG-loaded LDs of individual cells to
their corresponding dry-mass. To complete this conversion, we
approximated the cell cytosol as a uniform protein solution and
the LDs as organelles uniformly packed with TAGs. We con-
firmed this approximation by NanoSIMS and TEM correlative
imaging under various conditions (Fig. 3). Our NanoSIMS ana-
lysis also revealed that Y. lipolytica LDs display a relatively
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negligible protein content, which can exhibit significant diversity
for some organisms57,58.

Dedicated image acquisition enabled the independent control
of the LD and cytosol optical transmission, while correlative
image processing aided the localization of these compartments in
single-cells (Fig. 4). Using this approach, we performed the high-
throughput bivariate screening of non-TAG biomass and TAG
production and discovered that cellular noise impacts growth and
lipid biogenesis differently. This finding indicates that the
robustness of these processes to intracellular perturbations is
decoupled in Y. lipolytica under the tested conditions (Fig. 6b). As
a result, sporadic subpopulations with distinct metabolic trade-
offs emerge between isogenic cells at magnitudes and phenotypic
positions that depend on growth and strain conditions (Fig. 6a).
Further, we employed single-cell mass imaging to quantify
autophagy-based catabolic fluxes of non-TAG biomass and TAG
content independently in single living cells under nutrient-
limiting conditions (Fig. 8a). In comparison to existing approa-
ches relying on gene-encoded fluorescent markers (e.g., the LC3
protein), the developed method can independently quantify
protein and fatty-acid catabolic fluxes in a label-free fashion and
thus is not subject to biological noise and gene expression fluc-
tuations, and does not require cell permeabilization59–61.
Importantly, single-cell analyses revealed that autophagy-based
catabolic processes occurred primarily for sporadic TAG and
non-TAG biomass subpopulations (Fig. 8b). This finding
unmasks a possible bet-hedging survival strategy under starvation
empowered by cell-to-cell heterogeneity in protein and fatty-acid
recycling, similar to the previously identified role of LD hetero-
geneity against lipotoxicity62.

Quantitative mass imaging also revealed two key limitations of
existing phenotyping methods. First, it revealed that the size of
the TAG product and cell is a poor approximation of their dry-
density (Fig. 5), unmasking a precision limitation of conventional
microscopy in metabolic trade-off phenotyping (Fig. 2b). This
was also pertinent to autophagy-based macromolecule recycling,
where, unlike dry-mass, cells did not exhibit significant changes
in volume under starvation (Supplementary Fig. 10). Second,
single-cell mass phenotyping uniquely unmasked that sporadic
subpopulations with distinct metabolic trade-offs play a critical
role in the overall population response (Fig. 7a). Therefore, by not
detecting these subpopulations, population-averaging bio-
technologies are not only unable to inform about strain robust-
ness but may also impede precision strain classification, especially
for strains with reduced phenotypic distance between them
(Fig. 7b).

In conclusion, we described quantitative single-cell mass
imaging for the high-throughput screening of the growth-
productivity metabolic trade-off, and its application to the
precision strain classification, as well as robustness and
autophagy-based catabolic flux quantification. By enabling access
to phenotypic information that is otherwise inaccessible by
conventional methods, we anticipate that the paradigm of
metabolic trade-off imaging will meet several needs in bioengi-
neering and human-health2–4,63, beyond TAG biogenesis as pro-
bed by way of example here. The combination of mass with
fluorescence imaging can enable the screening of alternative
metabolites64, as well as spark further discoveries in the field of
autophagy59.

Methods
Imaging. Images were acquired with a quantitative-phase imaging system (Phi
Optics), based on spatial light interference microscopy (SLIM)24. In brief, phase
images are formed by projecting the back focal of a phase contrast objective onto a
liquid crystal phase modulator, which shifts the optical-phase of the light wavefront
scattered by the sample relative to the un-scattered light. Using this approach, we

acquired images informing about the relative phase delay of the cells and their
cytosolic components (scattered wavefront) with respect to the background (un-
scattered wavefront)24. The quantitative phase imaging system was coupled to an
inverted microscope (DMi8, Leica) equipped with phase contrast and fluorescent
imaging capabilities, as well as an automated XYZ stage and a ×100 magnification
objective (NA 1.3, PH3, Leica). Images were acquired using the Orca Flash 4.0
camera (Hamamatsu) with a 6.5 µm pixel. The acquisition parameters were set at a
20 ms exposure, and a 20 ms refresh rate for the spatial light modulator that,
similar to our previous report, exhibited an ideal combination between stability and
temporal resolution37. 3D images were acquired by scanning the objective along
the imaging path with a step of 400 nm (Z-axis), and the stage in the XY plane until
~2000 single-cell observations (approximately 40–60 3D stacks) were acquired on
average per experimental condition. Five types of 3D images were collected per
stage position. First, phase contrast intensity images, formed by the interference
between the portions of the transmitted wavefront through the sample that scatters
from the cells and remains un-scattered from the uniform background [Io(x,y,z)].
Second, phase contrast intensity images, where an additional phase modulation of
ΔΦm = π/2 was imposed on the scattered wavefront from the sample [Iπ/2(x,y,z)].
Third, phase contrast images, where an additional phase modulation of ΔΦm= π
was imposed on the diffracted wavefront from the sample [Iπ(x,y,z)]. Forth, optical-
phase images informing about the phase-delay induced by the cell structure with
respect to the background [ΔΦ(x,y,z)]. Fifth, fluorescent images using an inco-
herent excitation centered at 480 nm [If(x,y,z)]. Upon acquisition, all acquired stack
images were transferred to a storage server until further processing.

Quantitative phase image analysis. Image processing was performed using
ImageJ (National Institutes of Health), Matlab (Matlab R2018a, Mathworks), and
MetaMorph (MetaMorph Version 7.8.13.0, Molecular Devices). All image pro-
cessing functions were executed in desktop computers equipped with 32GB RAM.
The first step in the image analysis procedure was to detect the cell contour in the
optical phase images by direct optical-phase thresholding and no additional pre-
processing using the maximum-entropy algorithm in ImageJ37. To this end, we
selected the z-plane of the optical-phase images [ΔΦ(x,y,z)] corresponding to the
maximum cell area, followed by thresholding using the maximum entropy algo-
rithm (ImageJ). In this way, the cell’s Regions-of-Interest (ROIs) were identified,
recorded, and assigned a unique identity per individual cell. Due to the lower axial
resolution (z-axis) of the imaging set-up than the lateral one (xy-plane), we
employed a 2D projection method to obtain the volume of all individual cells9. To
this end, the cell ROIs were fitted with an ellipse and the cell volume was recon-
structed as an ellipsoid using the ellipse major and minor axes65.

The second step in the image analysis procedure was to localize the cytosolic
lipid droplets (LDs). Direct phase-amplitude thresholding gave insufficient
discriminatory power due to the significant contributions from the cell wall and
cytosol (Figs. 2a and 4). To overcome this, we first 3D deconvoluted the phase-
modulated intensity images [Iπ/2(x,y,z) and Iπ(x,y,z)] using the Point-Spread-
Function AutoQuant X3 procedure (MetaMorph). The throughput rate of this
(automated) step was approximately 12–14 h per experiment. Subsequently, the
two deconvoluted images were cross-correlated in Matlab using the following
expression:66

C x; y; zð Þ ¼
Iπ
2
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Iπ
2
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2
..
.
max

� Iπ ðx;y;zÞIπ..
.
max

�max

ð1Þ

Through this cross-correlation approach, the intensity signal emanating from
the LDs was considerably enhanced with respect to the cell cytosol and cell-wall.
This level of enhancement enabled the automated localization of LDs by intensity-
based thresholding through the maximum-entropy algorithm (ImageJ). Under
optimal, low-noise, imaging conditions, this approach yielded a success rate greater
than 86% in comparison to the ground-truth, which was established by manually
detecting the LD location and size. To correct for the remaining 14%, manual
curation was enabled via a Matlab graphical user interface, following similar
procedures in cell tracking and lineage reconstruction procedures67. On average,
the throughput rate of this image analysis step was 2–4 h per experiment.

The last step in the image processing procedure was to convert the acquired
phase-delay values of the lipid droplets (ΔΦTAG) and the cytosol (ΔΦcytosol) of
individual cells to their corresponding dry-mass (DM) values. For the cytosolic DM
we employed the following expression:24–29

DMcytosol ¼
λ

2 � π � dndc
�
Z

Δϕcytosol � dA ð2Þ

Where dn/dc is the protein-specific refractive index increment with a value of
1.85 × 10−4 m3 kg−1. ΔΦcytosol is the experimentally measured phase-delay from
the cell cytosolic area, λ is the wavelength of illumination (centered at 500 nm),
with the integration taking place across the entire cytosolic area A.

Unlike the cytosolic DM that can be approximated as a protein solution, the
specific refractive index increment cannot be directly applied to the LDs26. This is
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because glycerolipids are hydrophobic and, as such, cannot be approximated as a
solution in the aqueous cytosolic environment. In contrast, glycerolipids self-
assemble as spherical organelles that specifically for Yarrowia lipolytica are
relatively homogeneous with approximately 90–95% triacylglycerides (TAGs)35.
This representation was supported by our NanoSIMS analysis, which revealed that
LDs are indeed tightly packed with carbon, as illustrated in Fig. 3. Therefore, we
employed the Clausius-Mossotti equation to determine the number-density of
TAG molecules N through the experimentally determined refractive index of the
LDs via the following expression:68

N ¼ 3
4 � π � α

n20 � 1
n20 þ 2

� �
ð3Þ

Where α is the TAG molecular polarizability, and no is the refractive index of
the LDs. Specific to Y. lipolytica, we considered a mixture of 43% triolein, 24%
stearin, 20% tripalmitin, 9% trilinolein, and 4% tripalmitolein in accordance to
previous reports35, yielding a mixture polarizability parameter value of αmix =
1.04816 × 10−22 cm−3. The partial polarizabilities of the mixture components were
collected from existing databases69. Subsequently, the number density was
converted to the LD mass-density ρ through the following expression:

ρ ¼ N �M
NA

ð4Þ

Where N is the experimentally derived TAG number density, M is the TAG
molecular weight, NA is the Avogadro’s number, and ρ is the LD mass density. The
molecular weight of the TAG mixture was taken as mmix = 1.4375 × 10−21 gr, also
determined from existing databases69.

The selected mixture polarizability (αmix) and molecular weight (mmix)
parameter values were compared with values corresponding to different LD
compositions reported in the literature for a wide range of substrates and Y.
lipolytica strains31,35,40. By comparing more than 20 different strains and growth
conditions (including substrate and growth time), we found that the selected αmix

parameter value differs on average by 0.6% (maximum difference: 1.8%) with the
computed αmix parameters, while sensitivity analysis yielded the dependence of the
selected αmix parameter value on different LD compositions as negligible
(Supplementary Table 1). To a similar end, the selected mmix parameter value was
found to change on average by 0.6% (maximum change: 1.6%) with the computed
mmix parameters (Supplementary Table 2). Overall, this analysis indicates that the
selected αmix and mmix parameter values are not expected to vary significantly
under typical growth and substrate conditions for Y. lipolytica.

Finally, to attain the LD dry-mass, we multiplied the LD mass density with the
LD volume. The latter was determined from the 3D imaging data using the 2D
maximum projection method. By fitting a circle to the pixels of the 2D matrix
corresponding to the LDs, the LD volume was reconstructed. According to our
recent analysis, the 2D maximum projection analysis coupled to fitting yields LD
volumes that are equal to those determined directly with spin-disk confocal
microscopy9 (Spearman correlation coefficient of 0.982, p < .001). It is worth
adding that the above-described approach faithfully captures the LD corresponding
pixels, thus precisely informing about the LD refractive index and size. This is
because LDs exhibit higher optical-phase delay than the surrounding cell cytosol.
In this way, maximum projection eliminated contributions to the LD signal from
the cytosolic biomass (non-TAG) above and below the LDs.

Strains and growth conditions. Two genetically similar Y. lipolytica strains were
used in this study, both previously characterized in the context of their lipid
metabolism35. The Po1g strain is auxotrophic for Leucine (Leu−), and it was
obtained from Yeastern Biotech Company (Taipei, Taiwan). The MTYL038 strain
was constructed to constitutively express the LEU2 gene, which encodes for beta-
isopropylmalate dehydrogenase–IMDH, catalyzing the third step in the leucine
biosynthesis pathway. LEU2 was expressed under the intronless translation elon-
gation factor-1α promoter. The strains used in this study were Po1g (MATa, leu2-
270, ura3-302::URA3, xpr2-332, axp-2) and MTYL038 (MATa, leu2-270, ura3-
302::URA3, xpr2-332, axp-2 TEF-LacZ-LEU2).

For the rich YPD medium, we mixed 20 g/L Bacto Peptone (BD), 10 g/L yeast
extract (Alfa Aesar), and 20 g/L glucose (Fisher)35. Defined YSM medium was
made with 1.7 g/L yeast nitrogen base without amino acids and without
ammonium sulfate (BD Difco), 0.69 g/L complete supplement mixture (CSM)
without Leucine (Sunrise Science Products), and 1.1 g/L ammonium sulfate
(Fisher). To synthesize YSM medium with C/N: 15 and 150, 7.5 g/L and 75 g/L
glucose (Fisher) was added, respectively. For the Po1g strain, 0.1 g/L Leucine was
added in the YSM medium35.

All precultures were stored in YPD agarose (Invitrogen) plates at 4 °C and
passed twice in YPD medium (5 ml round bottom polystyrene tubes). The second
passage was performed at 50 × dilution, followed by a 24 h long growth in YPD,
centrifugation at 490 × g, and washing in YSM three times, prior to transferring to
125 ml glass shaker flasks (Corning) containing 20 ml of YSM medium. The flasks
were covered with polypropylene closures (Corning). The closures were inserted in
the open position to enable gas exchange and covered with aluminum foil. The

transfer from YPD to YSM was performed at dilutions yielding starting ODs close
to 0.01. All experiments were performed using three independent cultures. For this,
each of the triplicate cultures was passed from a plate to an independent medium
containing tube (for YPD) or flask (for YSM). Each replicate was passed with a 2 h
difference from the previous one to facilitate quantitative mass imaging at identical
timepoints. All growth experiments were performed in a shaking incubator at a
temperature of 29 °C. Growth curves were determined via optical density
measurements with a spectrophotometer at a wavelength of 600 nm (VWR, V-
1200). To measure the OD curves, cell culture aliquots were introduced in 1 ml
polystyrene cuvettes. The resulting growth curves for all growth conditions, strains,
and replicates are displayed in Supplementary Figs. 6 and 7.

Sample preparation. To perform the quantitative mass imaging, we introduced
2 µL from growing cultures between two coverslips and pressed gently to minimize
the distance between the two coverslips prior to transferring to the microscope for
imaging. Through this approach, cell motion and drift along the XY plane and the
optical imaging axis were minimized during image acquisition. For fluorescent
imaging, the bodipy dye (BODIPY® 493/503 (4,4-Difluoro-1,3,5,7,8-Pentamethyl-
4-Bora-3a,4a-Diaza-s-Indacene–Molecular Probes) solution in DMSO (Molecular
Probes) was added in the culture at a concentration of approximately 250 ng/ml,
followed by a 25–30 min long incubation under the same temperature and shaking
conditions as those during batch growth.

Nanoscale secondary mass spectrometry. Nanoscale secondary mass spectro-
metry (NanoSIMS) images were collected at the Environmental Molecular Sciences
Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL) using a
Cameca NanoSIMS 50L. All quantitative mass images were manually analyzed with
the OpenMIMS ImageJ plug-in. Stable isotopes were obtained from Cambridge
Isotopes, Inc (D-glucose U-13C6). Samples were coated with 10 nm of high purity
gold to improve conductivity (208 h, Cressington Scientific Instruments). Analysis
areas were pre-sputtered with 1016 ions × cm−2. Ion images of 12C−, 13C−, 12C2

−,
12C13C−, 12C14N−, 12C15N−, and 31P− were acquired using a 16 keV, 2 pA Cs+

primary beam with a diameter of ∼100 nm. Images were acquired at 512 × 512
pixel resolution with a dwell time of 6.75 ms/pixel. The carbon-13 content was
standardized daily using images of an in-house yeast standard (δ13C =−11‰
relative to VPDB) acquired in a similar fashion to those of the sample.

For sample preparation, cells were transferred from a plate stored at 4 °C and
grown twice in YPD for 24 h (2nd passage at a 50× dilution) in 5 ml round bottom
polystyrene tubes appropriately cupped to enable passive gas exchange. Following
washing (2×) in isotopic medium by spinning at 490 × g for 5 min, cells were then
passed to 40 ml of isotopic YSM medium at 10× dilution. To minimize signal
saturation, C/N ratios of 15 and 40 were employed, following the medium
preparation procedure described in previous sections with isotopically labeled
glucose being the sole carbon source. Specific to the C/N: 40, isotopic glucose was
introduced at a 20 g/L concentration.

Cells were sampled at various periods ranging from 6 h to 100 h, followed by
overnight fixation in 2.5% glutaraldehyde at 4 °C. Subsequently, the samples were
washed three times in non-isotopic medium and stained with 1% osmium tetroxide
(Ted Pella Inc.) for 1 h. Following three washes in non-isotopic medium, cells were
gradually dehydrated in ethanol series at 25%, 33%, 50%, 75% for 15 min each, and
5× in 100% ethanol on a gentle shaker for 30 min Infiltration in the LR White
acrylic resin (Ted Pella Inc.) was first performed in a 50:50 mixture with ethanol for
30 min, followed by three washes in 100% resin for 1 h each on a slow rotator.
Curing was performed in Eppendorf tubes at 60 °C for 24 h. For imaging, the
polymerized blocks were sectioned to 300 nm thin sections with a Leica Ultracut
UCT ultra-microtome. Sections were mounted on formvar-coated 100 mesh Cu
TEM grids and imaged on Tecnai T-12 TEM (FEI) with LaB6 filament operating at
120 kV. Images were collected digitally using an Ultrascan 1000 CCD (Gatan). The
same grids were employed in NanoSIMS imaging.

To confirm that the cytosolic locations exhibiting enhanced 13C content
correspond to LDs, we undertook a correlative imaging approach using NanoSIMS
and TEM for a few select samples. To this end, LDs were first identified in TEM via
their osmium mediated increased contrast, and the same cells were imaged in
NanoSIMS to determine their elemental composition (Supplementary Fig. 1). In
this way, we confirmed that LDs exhibit low content of naturally abundant N, but
significantly enhanced 13C content, as shown in Fig. 3.

Statistics. The Kolmogorov-Smirnov statistics were computed in Matlab (Matlab
R2018a, Mathworks) using the ktest2 function. 1D and 2D probability distributions
were obtained in OriginPro (Origin Pro 2017 64-bit, OriginLab) and through the
Kernel Bandwidth optimization approach70, respectively. Repeated measures
ANOVA tests and non-linear concatenated fits were performed in OriginPro.
ANOVA and t-tests were performed in Matlab using the anova1 and ttest func-
tions. For the ANOVA, repeated-measures ANOVA, and t-tests, the median
response from each biological replicate was used. Subpopulation analysis was
performed in Matlab using the shifthd function50. Sample size selection was guided
by previous NanoSIMS71, fluorescence image cytometry9, and quantitative-phase
imaging24–29 investigations.
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Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its Sup-
plementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author on reasonable request. The source data
underlying Figs. 6b, 7a, 7b, 8a, and 8b, as well as Supplementary Figs. 3, 9, and 10 are
provided as a Source Data file.
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