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� Abstract
High-throughput imaging with single-cell resolution has enabled remarkable discover-
ies in cell physiology and Systems Biology investigations. A common, and often the
most challenging step in all such imaging implementations, is the ability to segment
multiple images to regions that correspond to individual cells. Here, a robust
segmentation strategy for microbial cells using Quantitative Phase Imaging is reported.
The proposed method enables a greater than 99% yeast cell segmentation success rate,
without any computationally-intensive, post-acquisition processing. We also detail how
the method can be expanded to bacterial cell segmentation with 98% success rates with
substantially reduced processing requirements in comparison to existing methods. We
attribute this improved performance to the remarkably uniform background, elimina-
tion of cell-to-cell and intracellular optical artifacts, and enhanced signal-to-
background ratio—all innate properties of imaging in the optical-phase domain. VC

2017 International Society for Advancement of Cytometry

� Key terms
label free; image cytometry; segmentation; single-cell

INTRODUCTION

A plethora of biological research efforts now rely on imaging to unmask the under-

lying molecular-level mechanisms of cell function (1,2). Critically, such approaches

operate with single cell resolution, thus offering two distinct advantages in compari-

son to conventional population-based implementations (3–7). The first is the ability

to map the spatiotemporal organization of organelles (8,9) and molecular level

events (10,11), thus uniquely linking intracellular architecture to function. The sec-

ond is the capability to unravel the intrinsic phenotypic variability in a cell popula-

tion, an innate phenomenon (12–15) even under steady-state conditions (16).

Aided primarily by the advent of cost-effective and accessible information tech-

nologies, biological imaging has now entered the high-throughput (and “big-data”)

arena. To this end, imaging can be automated to acquire 3D information of individu-

al cells at multiple wavelengths, locations, and time-points (17,18). While such auto-

mated imaging, frequently referred to as image cytometry and high-content

screening (19–24), does not enable cell sorting, it does exhibit unique capabilities

with respect to conventional flow cytometry (25–27). Briefly, these capabilities per-

tain to the possibility of dynamically tracking individual cells, increased sensitivity,

as well as the power to normalize the phenotypic content to cell size (28–31).

A common need in all automated imaging, often considered as the

“cornerstone” and most challenging step in the analysis of image cytometry data, is

the ability to detect and outline the contour of individual cells. This process is also

referred to as “cell-segmentation,” namely the grouping of pixels that belong to the
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same cell (32). While segmentation is conceptually simple, it

lacks generality and, therefore, cannot be reliably and effort-

lessly implemented in all cell lines, imaging modalities, and

cell densities with no post-acquisition processing (28). The

absence of such a universal segmentation procedure is not sur-

prising given the enormous intracellular, cell-to-cell, and cell

type to cell type light intensity variability across the field-of-

view (FOV) of fluorescent and bright-field transmission

images. In fluorescence microscopy, stain localization can be

unpredictable and highly variable between cells (see Fig. 1a),

while phototoxic and photobleaching effects can further

undermine the segmentation process—especially during long-

term imaging experiments. Similarly, bright-field transmission

imaging, including phase-contrast (PC) and differential inter-

ference contrast (DIC), can also suffer from variable light scat-

tering coefficients between cells, and within cells due to

variable cytosolic and wall/membrane densities (see Fig. 1b).

To overcome the cell-to-cell and intracellular intensity

variability, several approaches have been reported, including

implementations both during and after image acquisition.

The former—hardware—based implementations typically

pertain to acquiring multiple images at different focus levels,

followed by 2D projection to generate enhanced contrast

between the cell and the background (33–35). The latter—

software—based implementations rely on sophisticated

processing algorithms that are applied post-image acquisition.

These go beyond the basic, and least computationally inten-

sive intensity thresholding, to more advanced procedures

based on feature detection, region accumulation, and mor-

phological filtering to name a few (32). To this end, various

freely-available software tools have been developed to aid

users in cell segmentation (28,36–41).

Despite such remarkable progress, however, each of the

aforementioned segmentation implementations typically oper-

ate optimally in a limited range of experimental conditions,

such as specific cell types, growth conditions, cell densities, and

imaging modalities. This limitation poses a significant chal-

lenge, as data acquisition and analysis fine-tuning are essential

for procedures that go beyond optimized experimental condi-

tions. In turn, this necessity impedes the throughput, and

scaling-up of many biological procedures (1).

To address this shortcoming, we report an optical-phase

thresholding strategy for cell segmentation using Quantitative

Phase Imaging (QPI), an inherently label-free technique. By

detecting the phase of the transmitted wavefront at the image

plane rather than its intensity (Fig. 2), we identified a

Figure 1. Segmentation of individual yeast cells, using either fluorescence via a cell-wall specific stain shown in (a), or Differential Inter-

ference Contrast (DIC) shown in (b). Both types of images were analyzed via max-entropy thresholding and watershed algorithms

(ImageJ)—shown in (c) and (d) for fluorescence and DIC respectively. Subsequently the computed regions of interest (ROI) were overlaid

with the original images—shown in (e) and (f). While fluorescence exhibits a higher success rate (52%), both imaging modalities fail to

properly segment all cells, evidencing the need for further image processing.
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substantially more sensitive metric for localizing the cell con-

tour, with minimal dependence on the cell-to-cell and intra-

cellular signal variability. This approach enabled a 99%

segmentation success rate in Saccharomyces cerevisiae yeast

cells at various optical magnifications, with no further post-

processing other than the classical thresholding and watershed

algorithms. Furthermore, by implementing a frequency

domain band-pass filtering, a 98% segmentation success rate

was achieved for Escherichia coli bacteria.

METHODS

Microscopy

Microscopy was performed using a quantitative phase

imaging system (Cell Vista SLIM Pro, Phi Optics, Inc.) (42),

coupled to an inverted microscope equipped with phase con-

trast, an automated XYZ stage, as well as a 403 (NA 0.6,

PH2), 603 (NA 0.7, PH2), and 1003 (NA 1.3, PH3) magnifi-

cation objectives (Leica, USA). Images were acquired using

the ORCA-Flash4.0 V2 sCMOS sensor (Hamamatsu, Japan)

for yeast cells, and the Grasshopper 3 GS3-U3-28S4M (Point

Grey Research) for bacterial cells. All acquired phase images

were processed on a desktop computer using ImageJ (National

Institutes of Health, USA). The acquisition parameters were

typically set at a 50 ms exposure, and a 15 ms refresh rate for

the integrated spatial light modulator. The stability of the

phase imaging measurements was independently characterized

using polystyrene particles (1 mm in diameter), immobilized

between a glass coverslip and an agarose gel. This controlled

analysis revealed enhanced stability, with a coefficient of varia-

tion of approximately 1.1% in temporal fluctuations (see Sup-

porting Information Fig. 1).

The procedure for phase image analysis for yeast and bac-

teria segmentation is detailed in the “Results” section.

Sample Preparation

Saccharomyces cerevisiae cells (ATCC
VR

18824TM) were

grown in rich YPD medium (10 g/L yeast extract, 20 g/L

Peptone, and 20 g/L dextrose), and transferred to fresh medi-

um every 24 hours at a 253 dilution. All experiments were

performed at 24 hours following dilution. For fluorescent

imaging of the cell wall (see Fig. 1a), 20 mL of the Calcofluor-

white stock solution (Product No. 6726, Eng. Scientific Inc.)

was added to 1 mL of the yeast culture suspension.

For quantitative phase imaging, 3 mL were sampled from

the suspension culture, deposited onto a glass cover slip, cov-

ered with a second coverslip, and pressed gently to minimize

the distance between coverslips. The later step was critical to

minimize undesired cell motion. Alternative approaches to

eliminate undesired motion of yeast cells—especially in the

context of microfluidics—can be also achieved by functional-

izing one glass coverslip with a chemical monolayer [e.g.,

poly-L-lysine (43,44)].

Where applicable, a specific amount of the density gradient

medium iodixanol (OptiPrep, Sigma Aldrich, USA) was added

in the suspension culture. Iodixanol acted as a contrast agent by

modulating the refractive index of the extracellular medium. To

this end, the pre-defined iodixanol volume was added directly

in the yeast suspension culture and mixed thoroughly for 1

minute, prior to depositing the cells on the coverslip.

Escherichia coli (ATCC 12141TM) were grown in standard

LB medium (10 g/L tryptone, 10 g/L NaCl, and 5 g/L yeast

extract), and transferred to fresh medium every 24 hours at a

503 dilution. All experiments were performed approximately

1 hour following dilution. To eliminate cell motion during

imaging, the cells were deposited on an agarose pad (Fisher

BioReagents, low-melt agarose). The pads were prepared by

dissolving approximately 2% agarose in water at 758C for 40

minutes, followed by depositing 400 lL of the mixture

between two glass coverslips, and let to dry for approximately

30 minutes (10). Subsequently, one coverslip was removed

and 2 lL of the E. coli suspension was deposited on the aga-

rose surface. The cell suspension was allowed to dry in a bio-

safety cabinet for approximately 15 minutes, and was then

covered with another glass coverslip for imaging.

RESULTS

A typical optical-phase image acquired at a 1003 magnifi-

cation for a S. cerevisiae cell is illustrated in Figure 3a. The cell-

induced median phase-delay was 0.5 radians, yielding a signal-

to-background ratio (SBR) greater than a factor of 500. By

repeating the measurement for over 340 observations (Fig. 3b),

we identified that the phase delay induced by each individual

cell is always greater than the background by more than two

orders of magnitude, with a median SBR value of 500. Impor-

tantly, the background optical-phase delay (i.e., pixels that do

not correspond to a cell) was remarkably uniform across the

field of view. This enhanced background uniformity eliminated

false positive detection during the segmentation procedure out-

lined below. Both the enhanced SBR and uniform background

critically enabled the segmentation of individual S. cerevisiae

cells with a 100% success rate. This rate is defined as the ratio

of true positive observations (TP) over the total number of

observations in the “ground truth.” Ground truth and TP

Figure 2. Schematic illustration of the optical-phase thresholding

implementation for segmenting individual microbial cells. The

transmitted wavefront exhibits variable phase delays with the

background being zero (DUb), contrary to the non-zero phase

delay induced by the cell cytosol and intracellular organelles

(DU1, DU2). [Color figure can be viewed at wileyonlinelibrary.com]
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observations correspond to those determined by manual seg-

mentation, and to those where the computer detected cell con-

tour matches the manual one, respectively (45).

To execute the cell segmentation procedure, the following

steps were implemented, relying solely on the default proce-

dures and settings of the ImageJ software package:

i. Phase-thresholding was implemented using the “maximum

entropy” algorithm (46); the resulting binary image, shown

in Figure 3d, evidenced that all individual cells were proper-

ly thresholded, with the exception of: 1) cells inducing low

optical-phase delay at pixels corresponding to specific low

refractive index cytosolic regions (indicated by blue

arrows), and 2) non-desirable smaller-sized objects identi-

fied in the background (indicated by red arrows).

ii. to fully incorporate cells exhibiting low refractive index

cytosolic regions to the segmentation process, we applied

the default ImageJ “fill-holes” and “watershed” algo-

rithms with no further modification (47); the resulting

binary image, shown in Figure 3e, indicates how these

two computationally minimal steps enable the successful

binarization of all cells within the image’s FOV;

iii. to finalize the segmentation process we applied the

default ImageJ “particle analysis” procedure, by exclud-

ing: (a) the non-desirable background objects via size fil-

tering with a 1,000 pixel threshold; and (b) cells that are

only partially within the full FOV of the image (“exclude

on edges,” ImageJ). The resulting binary image, shown in

Figure 3f, indicates the successful identification and seg-

mentation of all cells in the field of view, an outcome that

was repeatable for over 340 single-cell observations.

We expanded the aforementioned investigation to two

additional magnifications, namely 403 and 603 (Figs. 4a and

4b). Under these conditions, the segmentation success rate

was moderately reduced to approximately 96% for both mag-

nifications (Figs. 4c and 4d). This decrease is attributed to the

reduced XY optical resolution, which in turn contributes to

the reduced contrast between the extracellular background

with the low-refractive index cytosolic regions. As a result, it

becomes challenging to accurately identify and binarize the

contour of a few cells (<5% for both magnifications). Albeit

minor, this sub-population is characterized by distinct physio-

logical parameters, and thus its inclusion in the screening pro-

cesses needs to be maximized.

To address the reduced segmentation accuracy at 403

and 603 magnifications, we modulated the refractive index of

the extracellular environment to boost the optical-phase con-

trast between the cells and the background. To this end, we

introduced a small amount of density gradient medium

(iodixanol, OptiPrep, Sigma Aldrich) in the suspension cul-

ture prior to depositing on the cover slips. Such density gradi-

ent media are cost-effective and widely available due to

emerging needs of whole-body clearing in intact tissue imag-

ing (48,49). Iodixanol was specifically chosen to maintain

isosmotic conditions (�290 mOsm).

By varying the iodixanol content in the cell medium, we

identified that a 5% iodixanol concentration bestows the

highest phase delay induced by individual S. cerevisiae cells.

This is illustrated in the boxcharts of Figures 4e and 4f,

evidencing an approximately twofold optical-phase contrast

enhancement for both magnifications. By performing the

aforementioned image analysis procedure at this iodixanol

Figure 3. (a) A quantitative phase image of a budding S. cerevisiae cell at 1003 magnification; scale bar (lower left) corresponds to 5 mm, and

the calibration bar (right) exhibits the phase-delay per pixel in radians. (b) A histogram representing the signal-to-background ratio (SBR) for

n 5 340 single-cell observations. (c–f) The image processing pipeline including image acquisition (c), optical phase thresholding via “max-

entropy” (d), application of the “fill holes” and “watershed” algorithms (e), followed by cell segmentation coupled to size filtering with a

1,000 pixel threshold to eliminate any undesired, smaller-sized background objects (f). [Color figure can be viewed at wileyonlinelibrary.com]
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concentration, we attained the highest segmentation success

rates for both 603 and 403 magnifications at 100% and

99.4%, respectively, as shown in Figure 4g. Such segmentation

success rates were possible to maintain even for dense images

of greater than 100 cells per image.

In addition to S. cerevisiae yeast cells, we also investigated

the optical-phase thresholding based approach for segmenting

bacteria cells. To this end, we employed Escherichia coli as a

cell model system. To eliminate cell motion during imaging,

bacteria cells were deposited on agarose pads, as detailed in

the “Methods” section. Under such conditions, we found

that—unlike yeast cells—the segmentation success rate was

highly dependent on the cell density per FOV.

Specifically, at low cell densities (1–30 cells per FOV), the

yeast segmentation procedure yielded 100% success rates by

increasing the tolerance factor of the watershed algorithm

from the default value of 0.5–3 (see Supporting Information

Fig. 2). On the contrary, higher cell densities (>30 cells per

FOV) exhibited reduced success rates (�87%), irrelevant of

the watershed tolerance factor. This is primarily attributed to

the dense packing of the bacteria cells induced by the drying

process, and the potentially associated shadowing of cells

residing at lower levels along the optical path. The shadowing

challenge was addressed by applying a band pass filter (with

1–40 pixels cut-off frequencies) to all images prior to the yeast

cell segmentation procedure. As shown in the table and figures

of the Supporting Information Figure 2, this frequency

domain filtering approach improved the success rate to 98%.

DISCUSSION

In summary, we report the robust segmentation of indi-

vidual S. cerevisiae cells at success rates greater than 99% by

employing the optical-phase metric of the transmitted wave-

front rather than its intensity. These rates are comparable to

the substantially more computationally intensive segmenta-

tion approaches of phase-contrast yeast images [e.g., CellStar

(45)], and occasionally exceed them (50,51). In comparison to

these sophisticated image processing methods, however, the

proposed interference-based strategy requires no computa-

tionally intensive post-acquisition image processing, other

than default routines of low computational requirements that

are available in most processing packages, such as ImageJ. We

attribute this advantage to the elimination of the optical arti-

facts common in fluorescence and transmission images, which

primarily emanate from cell-to-cell and cytosolic staining/

scattering variability, as well as the ability to attain a back-

ground with a uniform optical-phase across the field of view.

In addition, we report a cost-effective method to boost

the optical-phase contrast between the target and the back-

ground, by introducing an isosmotic contrast agent to the cell

medium. This refractive index modulation approach yielded a

Figure 4. (a, b) Phase images of S. cerevisiae cells at 603 and 403 magnifications respectively; the scale bar (lower right) denotes 10 mm in

both images. (c, d) The binary images of (a) and (b) after processing; the arrows indicate the cells that were unsuccessfully segmented. (e, f)

Data-overlaid boxcharts (10%–25%–75%–90%) illustrating the single-cell phase-delay under various iodixanol concentrations at 603 (g) and

403 (f) magnifications; 300 observations on average were acquired per iodixanol and magnification conditions. (g) The segmentation suc-

cess rate at 603 and 403 magnifications as a function of the iodixanol concentration. [Color figure can be viewed at wileyonlinelibrary.com]
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nearly 100% successful segmentation at lower magnifications.

It is worth adding that mammalian cell segmentation was

recently reported using digital holography (52–54); however,

these approaches required more computationally-intensive

processing via morphological operations and marker-

controlled power watershed segmentation. Such processing

needs may be attributed to the different cell types that were

examined in these reports, or due to the use of coherent illu-

mination rather than incoherent radiation as probed by way

of example here.

While our results cannot be immediately generalized to

all microbial cell types, as well as imaging and growth condi-

tions, the nearly 100% segmentation success rate with no

post-acquisition image processing suggests the broad applica-

bility of cell segmentation with quantitative phase imaging.

This is supported by the similar level of success rates we

attained for E. coli cells. To this end, we applied a minimally

computationally intensive post-acquisition processing using a

frequency domain bandpass filter prior to segmentation. This

approach yielded an approximately 98% segmentation success

rate was achieved even for ultra-dense images containing

greater than 100 cells per image FOV. This rate is comparable

to the substantially more processing intensive approaches,

such as the maximum likelihood estimation (MALME) for

phase-contrast images of E. coli cells (55).

Overall, our findings indicate that the optical-phase

thresholding paradigm is a crucial step toward further scaling-

up of high-throughput imaging with single-cell resolution.
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