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network science characteristics 
of brain‑derived neuronal cultures 
deciphered from quantitative 
phase imaging data
chenzhong Yin1,4, Xiongye Xiao1,4, Valeriu Balaban1,4, Mikhail E. Kandel2,4, Young Jae Lee2,3, 
Gabriel popescu2 & Paul Bogdan1*

Understanding the mechanisms by which neurons create or suppress connections to enable 
communication in brain-derived neuronal cultures can inform how learning, cognition and creative 
behavior emerge. While prior studies have shown that neuronal cultures possess self-organizing 
criticality properties, we further demonstrate that in vitro brain-derived neuronal cultures exhibit 
a self-optimization phenomenon. More precisely, we analyze the multiscale neural growth data 
obtained from label-free quantitative microscopic imaging experiments and reconstruct the in vitro 
neuronal culture networks (microscale) and neuronal culture cluster networks (mesoscale). We 
investigate the structure and evolution of neuronal culture networks and neuronal culture cluster 
networks by estimating the importance of each network node and their information flow. By analyzing 
the degree-, closeness-, and betweenness-centrality, the node-to-node degree distribution (informing 
on neuronal interconnection phenomena), the clustering coefficient/transitivity (assessing the “small-
world” properties), and the multifractal spectrum, we demonstrate that murine neurons exhibit self-
optimizing behavior over time with topological characteristics distinct from existing complex network 
models. The time-evolving interconnection among murine neurons optimizes the network information 
flow, network robustness, and self-organization degree. These findings have complex implications for 
modeling neuronal cultures and potentially on how to design biological inspired artificial intelligence.

Current research in neuroscience models the brain as a dynamic complex network whose connections change 
continuously as we advance through  life1,2. Consequently, there is significant motivation for understanding the 
mechanisms by which neurons create or suppress connections to enable hierarchical parallel processing in the 
brain and explaining how learning, cognition and creative behavior  emerge3–8. Moreover, the brain connections 
are thought to obey a constrained optimization, such as maximization of information processing capacity (effi-
ciency) while minimizing the energy  expenditure9.

Motivated by these challenges, there is a growing effort on analyzing the evolution and emergence of con-
nectivity and its implications for information processing in both in vitro neural cultures and live brain sensing. 
For instance, prior efforts on investigating the morphological evolution of assemblies of living neurons showed 
that cultured neurons self-organize and form complex neural networks that exhibit a small-world structure (a 
network with many highly interconnected clusters with few long-range connections among clusters)10. Moreo-
ver, Okujeni et al.11 investigated the impact of neuron clustering (by modulating the protein kinase C) on the 
spontaneous activity in neuronal culture networks and showed that higher clustering contributed to synchronous 
bursting in some parts of the neuronal culture networks. Besides analyzing neuronal cultures at the macroscale 
and mesoscale, pioneering efforts that combined functional magnetic resonance imaging (fMRI) based on blood 
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oxygen level–dependent (BOLD) contrast with bulk calcium indicator signal measurement enabled to investigate 
in vivo the neuronal and glial activity coupling in rat somatosensory  cortex12.

In this study, relying on label-free quantitative microscopic imaging of neurons (with a resolution of 10000 
times higher than MRI technology), we reconstruct the neuronal culture networks (constructed from rat neu-
rons) and neuronal culture cluster networks (constructed from mice neurons) and analyze their topological 
properties in order to elucidate how neurons generate new connections and connect with each other over time. 
In the brain-derived neuronal culture network, the somas and the neurites represent the nodes and the edges, 
respectively. In the brain-derived neuronal culture cluster network, the neuronal clusters and the cluster neurites 
(between two different clusters) represent the vertices and their corresponding connections. By analyzing the 
structure and evolution of neuronal culture network and neuronal culture cluster networks, we demonstrate 
that these neuronal culture networks exhibit a unique self-optimization and assortative connectivity behavior, 
as well as a peculiar multifractal structure that cannot be captured by existing complex network  models13–16. 
These findings suggest that a new class of mathematical models and algorithmic tools need to be developed 
for describing the interwoven time-varying nature of the neuronal culture’s information processing as well as 
for understanding how these dynamic networks are controlled, or explaining the mechanisms of spontaneous 
activities in neuronal culture networks evolution.

Results
Neuronal interconnection dynamics displays assortative behavior. In this paper, we investigate 
neuronal culture networks (constructed from rat neurons) and neuronal culture cluster networks (constructed 
from mice neurons). We firstly present the generated neuronal culture networks’ layouts in Fig. 1 (Supplemen-
tary Fig. S1). Figure 1a–c present the neurons images from the SLIM imaging experiments (for details on SLIM 
imaging experiments see “Methods” section “Sample preparation” and “Microscopy”), Fig.1d–f show the zoomed 
portion of the middle region of the neuron images, Fig. 1g–i present the neuronal culture networks’ layouts after 
executing our tracing algorithm (“Methods” section “Cell segmentation and neural tracing” provide detailed 
information). Different colors represent the different identifications for each neuron and neurite. Figure 1j–l 
consists of a network representation of the neurons with their spatial position of neurons altered. In addition, we 
also analyze neuronal clusters obtained through a similar procedure as in Teller et al.17 while using a higher reso-
lution provided by SLIM imaging which decouples amplitude artifacts from highly detailed cellular information. 
The neural computation emerges from the complex dynamic interconnection patterns and signaling among 
neurons. Consequently, to decode the complexity of the dynamic neuronal interconnections, we investigate 
first the node-to-node degree distribution. While the degree  distribution18 captures the first-order statistic of a 
complex network, the node-to-node degree distribution offers second-order statistical information and explains 
how a node of a specific degree connects to lower or higher degree nodes. To study the second-order statistics of 
the networks of neurons and neuronal clusters, we consider three consecutive snapshots (i.e., after 0, 7, and 14 h) 
and estimate for each target node the degree distribution of its neighbors. For example, if a neuron with degree 
5 connects with another one with degree 4, we add 1 on the coordinate (5,4) in the 2D node-to-node degree 
distribution plot. Figure 2a illustrates an artificially generated network example. The dotted lines represent new 
connections to this artificial network after a period of time. Figure 2b,c illustrate the node-to-node degree distri-
bution for the artificial network example without and with the dotted links, respectively. In Fig. 2d–i, the x-axis 
represents the neuron degree and the y-axis represents the degree of its neighbor. The rationale for constructing 
the node-to-node degree distribution plot is twofold: (i) In each separate graph, we can find the tendency of a 
neuron with a certain degree to connect to neurons with lower, the same or higher degree; (ii) In the neuronal 
culture networks, the degree varies due to informational exchanges over the new neural connections. The length 
of the neurites grows over time. However, a neurite cannot be recorded as an edge in our network before its axon 
terminal connects with another neuron. Investigating the degree distribution at different time points can help us 
learn how the neurites grow and how neuronal culture networks construct new connections.

By analyzing the node-to-node degree distribution for the network of neurons (i.e., Fig. 2d–f) and the net-
work of neuronal clusters (i.e., Fig. 2g–i) across time, we observe: (i) In the beginning (t = 0 hours), based on 
Fig. 2d,g, the network of neurons and the network of neuronal clusters display a preferential attachment (PA)19 
phenomenon in the sense that neurons or clusters tend to connect to nodes of the same degree. In the network of 
neurons, the most frequent connection pattern corresponds to neurons of degree 11 that connect also to neurons 
with 11 connections. In the network of neuronal clusters, the most frequent connection pattern corresponds 
to nodes with 4 links that also connect to nodes of the same degree. (ii) After 7 h, from Fig. 2e,h, we observe a 
discrepancy between the neuronal culture network and the neuronal culture cluster network. The network of 
neurons displays three peaks corresponding to the following cases: neurons of degree 16 tend to connect to other 
neurons of degree 16, neurons of degree 10 connect to other neurons with degree 11, and neurons of degree 11 
connect to other neurons of degree 10. Also, the network is evolving and displays an increasing connectivity. In 
contrast, the neuronal culture cluster network exhibits only two peaks: the neuronal clusters (nodes) of degree 
5 connect to other nodes of degree 5 and nodes of degree 8 connect to other clusters of degree 8. (iii) After 14 
h, from Fig. 2f,i, the network of neurons displays a two peak pattern (i.e., nodes of degree 14 are more likely to 
connect to nodes with degree 14 and nodes of degree 19 also prefer to connect to other nodes with degree 19) 
and the network of neuronal clusters shows a single peak (i.e., the nodes of degree 8 are more likely to connect 
with other nodes with degree 8). We also observe from all these plots that the distribution of neurons and their 
neighbors’ degree has a higher density along the diagonal. One can explain this phenomenon by the existence of 
multiple communities of neurons within which each neuron is likely to be fully connected with its community 
members (Fig. 1j–l); consequently, most of the neurons within the same community can have a similar degree. 
Furthermore, we can observe from all plots in Fig. 2 that the regions with a higher occurrence frequency of 
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Figure 1.  Layouts for neuronal culture networks at three representative time points. Neurons at the start of the 
experiment at time t = 0 h (a), t = 7 h (b) and the end of the experiment t = 14 h (c). The magnification zoom of 
the neurons at t = 0 h (d), t = 7 h (e) and t = 14 h (f). (g–i) show the identified neurons and their connections 
obtained with our algorithm (see “Methods” section on “Cell segmentation and neural tracing”) for the three 
corresponding time points (each neuron and neurite is identified by a unique color). After constructing the 
adjacency matrices from the tracing and segmentation algorithm, the visualization of the network layouts at t = 
0 h (j), 7 h (k) and 14 h (l) are presented.
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node-to-node distribution move and spread along the diagonal as time goes on. This implies that over time more 
edges are generated and nodes gain in degree. We conclude that a node has a high probability of connecting to 
other neurons that have the same degree. The assortativity coefficient represents the tendency for nodes to con-
nect to other nodes with similar properties within a  network17. Thus, we calculate the assortativity coefficient of a 
single neuronal culture network and a single neuronal culture cluster network for three consecutive snapshots in 
Table 1. Based on Table 1, all the assortativity coefficients are positive values and both neuronal and neuronal cul-
ture cluster networks have a decreasing tendency of assortativity coefficient. Based on Fig. 2 and Table 1 results, 
we conclude that (i) a neuron has a high probability of connecting to other neurons that have the same degree 
and (ii) neurons will set up new connections with neighboring neurons over time which have proximate degrees.

Microscale neuronal culture networks and mesoscale neuronal culture cluster networks opti‑
mize the network information transfer (flow) and robustness. Neural computations governing the 

Figure 2.  Degree distribution for neurons and neural clusters. An artificial network example (a), where the 
yellow node has the highest degree centrality, the red node has the highest closeness centrality and the green 
node has the highest betweenness centrality (with solid lines and dotted lines). The node-to-node degree 
distribution for the network example (a) without (b) and with (c) additional dotted lines in order to mimic 
the connectivity phenomena observed in neural cluster networks, where the color bars present the occurrence 
frequency of the node-to-node matrices and the red cycles with connection pairs represent the coordinate of the 
peak values in the matrix. The node-to-node degree distribution for the neuronal culture networks at the start of 
the experiment t = 0 h (d), after 7 h (e), and the end of the experiment after 14 h (f). The node-to-node degree 
distribution for the neuronal culture cluster networks at the start of the experiment t = 0 h (g), after 7 h (h), and 
at the end of the experiment after 14 h (i).
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sensorial processing, perception, and decision-making emerge from the information transfer across interwo-
ven time-varying complex neuronal culture  networks20. To investigate the performance of information trans-
fer from biological data consisting of only snapshots of microscale neuronal culture networks and mesoscale 
neuronal culture cluster networks, we quantify their degree centrality, the closeness centrality and betweenness 
 centrality21. Generally speaking, the centrality measures the importance of a node across a heterogeneous com-
plex network. For instance, in a social network, the influencer nodes (e.g., politicians, TV stars) have a large 
number of followers and hence are capable of propagating specific messages faster than other network nodes. 
The degree centrality measures the number of links incident upon a node and can be related to the localized 
network transport or throughput capacity. The closeness centrality of a node quantifies the average length of 
the shortest path between the target node and all other nodes in the graph and encodes information about the 
information transmission latency across a specific network topology. The betweenness centrality measures the 
number of times a node appears along the shortest path between all pairs of two nodes. The higher the between-
ness centrality of a node, the more information paths pass through it and the less robust the network is to 
targeted attacks on this node (for details on the degree-, closeness-, and betweenness-centrality, see “Methods” 
section “Networks centrality”). Fig. 2a shows an artificial network example (with additional connections) where 
the red node has the highest closeness centrality, the yellow node has the highest degree centrality, and the green 
node has the highest betweenness centrality (Supplementary Tables S1, S2 exhibit the degree-, closeness-, and 
betweenness centrality for each node in Fig. 2a). 

Figure 3 illustrates the cumulative distribution function (CDF) curves of the degree centrality, closeness cen-
trality and betweenness centrality estimated for three consecutive snapshots of a single brain-derived neuronal 
culture network and a single brain-derived neuronal culture cluster network (Supplementary Figs. S2, S3 present 
the histograms and smoothed curves about the degree-, closeness, and betweenness centrality for neuronal cul-
ture network and neuronal culture cluster network). For instance, over the course of the experiment, the CDF 
curves of the degree centrality in Fig. 3a of the microscopic neuronal culture networks exhibit a shift towards 
higher degree centrality values. This is best reflected in Fig. 3g, where the average degree centrality shows an 
increasing trend. At a higher scale of a network of neuronal clusters and the same three time points, the CDF 
curves of degree centrality exhibit a more pronounced shift to higher values (see Fig. 3d). The higher degree 
centrality values are the higher the chance of nodes to receive the information passed over the network. These 
results demonstrate that the networks of neurons and neuronal clusters tend to optimize the degree centrality 
and support higher information transmission across the network over time. Neuronal culture networks achieve 
this increase in degree centrality by growing connections, while the network of neuronal clusters increases their 
degree centrality through the merging of clusters and connection inheritance.

Along the same lines, Fig. 3b for the network of neurons and Fig. 3e for the network of neuronal clusters show 
that the CDF curves of closeness centrality is shifting to the right (higher values). This trend can also be observed 
in Fig. 3h where the average closeness centrality has an upward tendency. The higher the closeness centrality of 
a node is the less time it takes for this node to reach all other nodes. Consequently, these results show that the 
network of neurons and the network of neuronal clusters tend to optimize the closeness centrality and minimize 
the information transmission latency. By comparing the dynamics of the network of neurons with that of the 
network of neuronal clusters, we observe a doubling effect for the magnitude of the location of the peak in the 
closeness centrality CDF curves.

The analysis of the betweenness centrality CDF curves and the average betweenness centrality shows a 
decreasing tendency for both the networks of neurons (Fig. 3c) and the network of neuronal clusters (Fig. 3f). A 
lower node betweenness centrality means that the node appears fewer times along the shortest path among all 
network nodes. Of note, during the course of the experiment, we observe that some neurons die and are deleted 
from the network. If a neuron with a high betweenness centrality is removed from the network, then the network 
has a higher chance of becoming disconnected. However, since the average betweenness centrality is decreasing 
over time, the dying neurons have a lower probability of causing network disconnection. Thus, we conclude that 
the networks of neurons and neuronal clusters tend to minimize the betweenness centrality, which can increase 
the robustness of the network against cascading failures. In summary, the analysis of degree centrality, closeness 
centrality and betweenness centrality shows that the networks of neurons and neuronal clusters tend to optimize 
the network information transfer.

Networks of neurons and networks of neuronal clusters display a significant clustering phe‑
nomenon compared to state-of-the-art complex network models. In this section, we investi-
gate whether the network of neurons can be well described by existing complex network models (i.e., Random 
Regular (RR)13, Erdos-Renyi (ER)14, Watts-Strogatz (WS)15, Barabasi-Albert (BA)16, Spatial Scale-Free model 
(SSF)22,23 and Weighted Multifractal Graph (WMG)24) by generating artificial networks of the same size (in 

Table 1.  The assortativity coefficient for neuronal culture networks and neuronal culture cluster networks in 
consecutive snapshots.

Models

Assortativity

Start (t = 0 h) Middle (t = 7 h) End (t = 14 h)

Neuronal culture network 0.5118 0.4400 0.4258

Neuronal culture cluster network 0.3153 0.2663 0.2109
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terms of the number of nodes and edges) according to these models for all the considered time points (within 14 
hours) and computing their transitivity, clustering coefficient, and the square of the clustering coefficient metrics 
(see Fig. 4). RR network is defined as a random d-degree network on n nodes; ER network is G(n,p) model, where 
n is the number of nodes, p is the linking probability; WS is a random network model which has small-world 
network properties; BA model generates scale-free networks characterized by a power law degree distribution; 
SSF model exhibits spatial scale-free networks where the probability of the incoming node i setting up a connec-
tion with an existing node j is pi→j ∝ kjexp(−dij/rc) where dij is the distance between i and j, kj is the degree of 
node j and rc is the control parameter. Besides these well-known complex network models, since the neuronal 
culture network and neuronal culture cluster network possess multifractal characteristics (for details on this 
conclusion, see “Results” section “Neuronal culture networks and neuronal culture cluster networks possess 
multifractal characteristics” and “Methods” section “Multifractal analysis”), we also investigated whether the 
WMG model can provide a better fit for the considered neuronal culture networks. The WMG model captures 

Figure 3.  Investigate the changes of degree-, closeness-, and betweenness-centrality in consecutive neuronal 
culture networks and neuronal culture cluster networks. The CDF curves of the degree centrality (a), closeness 
centrality (b) and betweenness centrality (c) for neuronal culture networks for three times t = 0, 7, and 14 h. 
The CDF curves of the degree centrality (d), closeness centrality (e) and betweenness centrality (f) for neuronal 
culture cluster networks for three times t = 0, 7, and 14 h. The average degree centrality (g), average closeness 
centrality (h) and average betweenness centrality (i) for neuronal culture networks for 15 time points within the 
14 h experiment.
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and generates weighted multifractal networks by mapping from recursively constructed measures of linking 
probability. The transitivity T of a graph is based on the relative number of triangles in the graph, compared to 
the total number of connected triples of nodes (also known as the global clustering coefficient). The clustering 
coefficient measures the degree to which the network nodes connect to each other. The square of the cluster-
ing coefficient quantifies the cliquishness in bipartite networks where triangles are absent (for details on the 
transitivity, clustering coefficient, and square of the clustering coefficient, see “Methods” section “Clustering 
coefficient”). We investigate the clustering coefficient because we observe that the neurons tend to organize into 
various communities over time (see Fig. 1j–l), in this way, it is likely that the neuronal culture networks have 
“small world”15 properties. As one can observe from Fig. 4, the values of the transitivity and clustering coefficient 
metrics for the network of neurons are significantly higher than those corresponding to the artificially generated 
networks corresponding to the first five above-mentioned models (To compare the biological networks against 
existing network models, for each time point, we compute the average and the 95% confidence intervals of the 
transitivity, clustering coefficient and averaged square clustering coefficient from 1,000 artificially generated net-
work realizations). Alternatively stated, the neurons tend to form communities with very different topological 
structures than the well-known RR, ER, WS, BA, or the SSF models. In contrast, the fitting of the WMG model 
shows smaller errors in terms of the transitivity, clustering coefficient and averaged square clustering coefficient 
metrics.

After investigating the neuronal culture network structure characteristic, we analyze the spatial organization 
or metric correlations of neuronal culture networks based on the topology. We measure the functional relation-
ship between the Euclidean distance of neighboring neurons and the number of interconnections among them. 
In Fig. 5, we calculate the probability of observing the length of a connection between two neurons exceeding a 
certain threshold (also called exceedance probability) for different timestamps (t = 0 h, t = 7 h and t = 14 h). We 
find that larger Euclidean distances (threshold) have lower probabilities. These results indicate that the physi-
cally closed neurons have more connections than the physically distant ones. Furthermore, we observe that the 
distance between arbitrary two neurons in the same community decreases, while the number of edges in each 

Figure 4.  Comparison of clustering indices between the neuronal culture networks and model-based randomly 
constructed networks of the same size. (a) The comparison (errors) in terms of the transitivity between the 
neuronal culture networks and the RR, ER, WS, BA, SSF, and WMG based generated networks (for each model 
we generated 1000 network realizations) for the 14 h experiment. (b) The comparison (errors) in terms of 
average clustering coefficient between the neuronal culture networks and the RR, ER, WS, BA, SSF, and WMG 
based constructed networks (for each model we generated 1,000 networks) within 14 h. (c) The comparison 
(errors) in terms of average square clustering coefficient between the neuronal culture networks and the RR, ER, 
WS, BA, SSF, and WMG based networks during the 14 h experiment.

Figure 5.  Variations of interconnections between two neighboring neurons. The exceedance probability for 
the length of connections between two neurons (i.e., the probability of observing the length of a connection 
between two neurons exceeding a certain threshold) at the start of the experiment t = 0 h (a), after 7 h (b), at the 
end of the experiments after 14 h (c), and the comparison of (a–c) is shown in (d).
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community increases. These observations also corroborate with the conclusions drawn from analyzing the degree 
centrality and closeness centrality. In summary, we conclude that the network of neurons (1) possesses a network 
generator that is different from the RR, ER, SW, BA, and SSF models, (2) has more interconnections between 
physically closer neurons, (3) has the tendency to self-optimize in order to enable and support higher, faster and 
more robust information transmission, and (4) exhibits multifractal topological characteristics.

neuronal culture networks and neuronal culture cluster networks possess multifractal char‑
acteristics. Previous  works25–27 have argued that the brain intelligence is correlated with the regional gray 
matter, volume, tissue, and microstructure of white matter. Here, we adopt an alternative topological perspec-
tive to the correspondence between neuronal connectivity complexity and intelligence and analyze the mul-
tifractal characteristics of neuronal culture networks. To comprehensively observe the structural complexity 
and heterogeneity of neuronal culture networks and neuronal culture cluster networks, we use the finite box-
covering  algorithm28 and estimate their multifractal spectrum and generalized fractal dimension (for details on 
the multifractal analysis and box-covering algorithm, see “Method” section “Multifractal analysis”). Multifractal 
analysis (MFA) applies a distorting exponent q to the probability measure at different observation scales and can 
quantify the structural characteristics of networks by comparing how the network behaves at each distortion. 
MFA provides information about the heterogeneous self-similarity of our networks and can help us identify 
changes in their topological heterogeneity over time. By observing the multifractal spectrum f (α) under differ-
ent Lipschitz–Holder exponent α , we can capture the variation in scaling behaviors of different subcomponents 
of the network. Equivalently, this variation could be observed by learning the generalized fractal dimension D(q) 
under the order q. In multifractal spectrum, the larger the α , the higher density of the self-similar structure in 
the network; the larger the f (α) , the larger the amount of the self-similar structures in the network; the larger 
the width ( αmax − αmin ), the more diverse the fractal structure in the network.

Applying the MFA for the neuronal culture network (i.e., Fig. 6a,b, Table 2) and the neuronal culture cluster 
network (i.e., Fig. 6c,d, Table 2) across time, we observe: (i) Fig. 6 shows that the neuronal culture networks and 
the neuronal culture cluster networks possess multifractal properties. By comparing their multifractal spectrum 
parameters summarized in Table 2, we conclude that the f (α)max and the width of the spectrum of the neuronal 
culture network are larger than those of the neuronal culture cluster network. Consequently, the neuronal culture 
networks have stronger multifractality, which means stronger heterogeneity and higher complexity. (ii) From 
Fig. 6a,b, we can see that although the number of edges of the neuronal culture network increase across time, 
its multifractal spectrum and the generalized fractal dimension have only small changes without monotonic 
variation with time. The spectrum has no tendency to move over time, which shows the common self-similar 
structures of the neuronal culture network do not change. Therefore we can conclude that our neuronal culture 
network has a relatively stable multifractal structure, which means even if neurons generate new connections 
over time, the self-similar structures of the neuronal culture network do not change much. (iii) From Fig. 6c,d, 
we can see different trends from the neuronal culture network. The multifractal spectrum and the generalized 
fractal dimension of the neuronal culture cluster network exhibit a monotonic pattern over time. The result 
shows that the multifractal spectrum moves down to the left, which means the common self-similar structures 
of the neuronal culture cluster network become less dense. The width of the spectrum and the generalized frac-
tal dimension decrease across time, which means the self-similar structures become more concentrated so the 
diversity of the network structure decreases with time. This is because in the neuronal culture cluster network, the 
clusters move and sometimes join to form a larger cluster. The continuous merger behavior will bring structural 
changes that reduce the heterogeneity of the neuronal culture cluster network as our results show.

Discussion
By adopting a complex networks characterization, we find that brain-derived neuronal culture networks and 
neuronal culture cluster networks of rats and mice exhibit a network flow self-optimization phenomenon (i.e., 
higher information transmission, latency reduction, and robustness maximization over time) either by growing 
connections or via the merging of neuronal clusters. This analysis complements and contributes to earlier studies 
that showed the existence of self-organized criticality, of a small-world state and that higher clustering leads to 
spontaneous bursting in parts of the neuronal culture  networks10,11. Future work should investigate whether the 
self-organized criticality is goal-driven and contributes to the observed self-optimization phenomenon. Further-
more, we concluded that neuronal interconnection architecture displays assortative behavior. To elucidate the 
mechanisms by which neurons create or suppress connections to enable communication in brain networks and 
understand their role in learning, cognition, and creative behavior, future studies should combine the complex 
sensing  approach12 of probing the neuron and glial cell activity coupling with network science concepts and tools 
presented in this study. In addition, our clustering analysis demonstrates that the network model characteriz-
ing the brain-derived neuronal culture networks does not fit the Random Regular (RR)13, Erdos-Renyi (ER)14, 
Watts-Strogatz (WS)15, Barabasi-Albert (BA)16, and Spatial Scale-free (SSF) network  models22,23. In contrast, the 
weighted multifractal graph  model24 provides the best fit (smallest error) in terms of matching the clustering, 
transitivity, and square clustering coefficients. Finally, by analyzing the spatial properties associated with the 
topology of the monitored neuronal culture networks we observe that closer neurons have more interconnec-
tions among them than the distant ones.

Current neuroscience  studies29,30 discuss the importance of investigating the in vitro neuronal cultures as 
an efficient system to model the neural activity, as well as, the role of understanding the spatial embedding and 
metric correlations on connectivity and activity in neuronal culture  networks31. Along these lines, our proposed 
combined network science framework and image processing tool can be further employed for analyzing the inter-
actions and metabolic coupling between neurons and glial cells (e.g., astrocytes) either via fMRI  sensing12 or an 
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enhanced quantitative phase imaging approach used in this work for live monitoring of neurons and glia. With 
the goal of investigating the pulsation in vitro neuronal cultures, Orlandi et al.29 showed that neuronal spiking 
behavior can originate from a random set of spatial locations specific to each culture and is modulated by a non-
trivial interdependence between topology and neural dynamics. To study the spatial arrangement of neurons in 
neuronal cultures, a random field Ising inspired  model32 showed that metric correlations dominate the neuronal 
topological properties. Tibau et al.33 extracted the effective connectivity of neuronal cultures from the spontane-
ous activity of calcium fluorescence imaging recordings and observed an increase in average connectivity over 

Figure 6.  Multifractal analysis of neuronal culture networks and neuronal culture cluster networks. (a) 
Multifractal spectrum f (α) as a function of Lipschitz–Holder exponent α for neuronal culture networks in t = 
0, 7, and 14 h. (b) Generalized fractal dimension D(q) as a function of q-th order moment for neuronal culture 
networks in t = 0, 7, and 14 h. (c) Multifractal spectrum f (α) as a function of Lipschitz–Holder exponent α for 
neuronal culture cluster networks in t = 0, 7, and 14 h. (d) Generalized fractal dimension D(q) as a function of 
q-th order moment for neuronal culture cluster networks in t = 0, 7, and 14 h.

Table 2.  The parameters of multifractal spectrum.

Parameters

Neuronal culture networks
Neuronal culture cluster 
networks

Start Middle End Start Middle End

f (α)max 1.6220 1.5892 1.5690 1.4472 1.3213 1.1821

αmax − αmin 1.0661 1.1974 1.0561 0.9849 0.9708 0.8548

f (α)max − f (α)min 0.8840 0.8057 0.8211 1.0071 0.9581 0.7426



10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:15078  | https://doi.org/10.1038/s41598-020-72013-7

www.nature.com/scientificreports/

time and various degrees of assortativity. This body of work suggests that the spontaneous activity in the mam-
malian brain plays a fundamental role in brain development, information transmission, and communication of 
different brain regions and provides a new research direction to investigate the functional relationship between 
the evolution of the neuronal culture networks (with multifractal characteristics) and neuronal spiking activities.

In this work, we investigated the mathematical properties of brain-derived neuronal culture networks and 
brain-derived neuronal culture cluster networks (by precisely locating and detecting each axon and dendrite 
within 0.03nm optical path-length  accuracy34) which provides a way to analyze the spontaneous evolution of the 
neuronal cultures in the early stages (i.e., 14 h). Furthermore, future studies should characterize and distinguish 
between healthy and unhealthy behavior (e.g., glioblastoma/brain tumor) of neurons as well as identifying the 
degree of toxicity of cultures. Moreover, future mathematical analysis of neuronal culture networks can also help 
us understand how neurons connect to guide the information flow as we recall the past, envision the future, or 
make social inferences, model the perception, inference, generalization and decision making. Lastly, by explain-
ing the mechanisms of cognitive control emerging from multiscale neuronal culture networks, we can identify 
new biological inspired strategies for designing deep learning architectures.

Methods
Sample preparation. Neural clusters were prepared from mouse neurons and neural networks were pre-
pared from rat neurons. Neurons harvested from B6/J mice were thawed and plated on poly-d-lysine-coated 
glass-bottom petri dishes. Low-density cultures (65 cells per  mm2) were grown at 37 °C, in the presence of 5% 
CO2, in Neurobasal growth medium supplemented with B-27, 1% 200 mM glutamine and 1% penicillin/strep-
tomycin. All reagents were sourced from Invitrogen (Thermo Fisher Scientific). Half the media was aspirated 
twice a week and replaced with fresh maintenance media warmed to 37 °C. Live-cell imaging took place three 
days in vitro35.

Dissected cortical tissue from AGE rats was dissociated in 3 mg/mL protease 23 (Sigma P4032) in 1 × slice 
dissection solution (pH 7.4). Primary neurons were grown on Poly-d-Lysine (Advanced BioMatrix 5049-50) 
treated glass-bottom dishes (Cellvis, P06-14-0-N). Cells were grown in maintenance media for 10 days before 
time-lapse microscopy. We observe a density of approximately 800 cells per  mm2.

Microscopy. Spatial light interference microscopy (SLIM) is an optical microscopy technique that can cap-
ture the evolution of living  neurons34. Neurons are particularly challenging to image, as complex phenotypes 
such as arborization are adversely modulated by phototoxicity. A higher resolution SLIM imaging method could 
decouples amplitude artifacts from high detailed cellular information. When imaging neural networks, we 
attempt to ameliorate phototoxicity concerns by reducing the illumination intensity (Thorlabs MCWHL5, 30 
milliamps, 3% of total power) and average over several images following the hybrid denoising scheme  in36. To 
boost the sensitivity of our measurements, we choose to use Spatial Light Interference Microscopy (SLIM Pro, 
Phi Optics) which is particularly well suited to imaging the fine details found in neuronal  arbors35.

Cell segmentation and neural tracing. The difference between neuronal culture networks and neuronal 
culture cluster networks is the definition of the node. In the neuronal culture network, the node is defined as a 
single neuron and in the neuronal culture cluster network, the node is defined as a cluster of neurons. To extract 
neuron connection information and set up neuronal and neuronal culture cluster networks from our brain neu-
rons dataset, our process has the following steps: (1) Extracting valid data We pick out the clear parts from all our 
neuron pictures via a machine learning approach (i.e., LeNet model). We randomly pick 20% figures from our 
dataset, check the resolution of each figures, and label these figures with 0s (representing dim) and 1s (represent-
ing clear) to generate our training set. We construct a convolutional neural network (CNN) model called  LeNet37 
and train it with the training set. Then we test on the remaining 80% figures. Finally, based on the testing result 
from our LeNet model, we select the parts with relatively high resolution in all time points for image processing. 
(2) Differentiating the debris and neurons Since neurons (or neuron clusters) in the picture can be detected from 
their bright round shape, we set the minimum size of neurons as follows. For the rat brain image dataset and the 
mouse brain image dataset, the minimum size of neurons and neuron clusters are set as 600 pixels and 800 pixels. 
If the size of a bright round shape is less than the threshold, it is defined as debris. (3) Filling gaps between neurites 
There are many gaps existing between neurites caused by insufficient sharpness of the original neuron pictures 
or by synaptic cleft, which would disconnect the neurites or connectivities between neurons. Therefore, we pro-
pose a terminal detection algorithm (via detecting the number and location of pixels) and mark all the terminals 
from our database. If a neuron of neurite lays around a marked terminal, we will fill in this gap and consider 
this neurite connects with the marked terminal. (4) Tracing the neurites We develop a tracing algorithm (using 
a steerable filter) to trace the neurites. Considering one neuron as the source node and track its neurites pixels 
by pixels. If a neurite connects with another neuron, these two neurons are recorded as connected. By repeating 
the tracing algorithm in relation to all neurons, we can achieve neuronal and neuronal culture cluster networks.

Networks centrality. In this paper, network centralities are analyzed by the NetworkX package in Python. 
The networks centrality measures the importance of a node across a heterogeneous complex network. We briefly 
introduced the degree-, closeness-, and betweenness- centrality as follows:

Degree  centrality38 of node v is defined as:

(1)Degree(v) = deg(v)
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where deg(v) is the number of links upon node v. The node-to-node degree distribution means the quotient 
between degree distribution of u and v (assume a edge e(u, v), where u is the source node and v is the destina-
tion node).

Closeness  centrality39 of a node quantifies the average length of the shortest path between the target node 
and all other nodes in the graph and encodes information about the information transmission latency across a 
specific network topology. It can be defined as:

where d(u, v) is the distance between node u and node v.
Betweenness  centrality40 is generally used to measure the number of time a node appears along the shortest 

paths between two other randomly picked nodes. It can be defined as:

where σst is the number of shortest paths between node s and t and σst(v) is the number of these shortest paths 
which pass through the node v.

Clustering coefficient. In this paper, these network clustering coefficients are analyzed by the NetworkX 
package in Python. The clustering coefficient measures the degree of which degree in a complex network tend 
to cluster together.

Transitivity also called global clustering coefficient is based on triplets of nodes. Triplet means a group of 
three nodes which are connected by two or three edges. It can be defined as:

The clustering coefficient (or local clustering coefficient) measures how close /connected a node is to its neighbors 
and forming a clique (i.e., a complete graph). The clustering coefficient is defined as follows:

where V ′ is the set of nodes (v) whose degree is larger or equal to 2. c(v) = δ(v)/τ(v) , where δ(v) is the number 
of triangles of node v and τ(v) is the number of all triplets of node v.

The squared clustering coefficient quantifies the cliquishness in bipartite networks (e.g. social network) where 
triangles are absent (the standard clustering coefficient is always zero). Similar with the triangles, the squares 
clustering coefficient is the rate between the number of squares and the total number of possible  squares41. It 
can be defined as:

where qimn represents the number of neighbors of m and n (not considering node i); αimn is represented as 
αimn = 1+ qimn + θmn ; θmn is 1 if m and n are connected and 0 otherwise; ki is the number of neighbors for 
node i.

Multifractal  analysis42. Using the box-covering algorithm in a mono-fractal network, we can capture the 
relationship of r (e.g., the size of the box) and M(r) (the number of nodes in the box) as a power law of the form 
M(r) ∼ rD , where D is the fractal dimension (a real-valued number representing the mono-fractal feature of 
the network). Multifractals could be considered as the superposition of multiple mono-fractals, and we use the 
finite box-covering  algorithm28 to study the localized and heterogeneous self-similarity of networks. To capture 
the multifractal features in networks, the distortion factor q was introduced to distinguish the details of differ-
ent fractal structures. Then we can capture the multifractality of the network by learning a generalized fractal 
dimension D(q) under different distortion factors q. In this way, the number of nodes in the ith box scales as 
Mi(r) ∼ rαi and the number of boxes with the same α scales as N(α) ∼ r−f (α) , where α is the Holder exponent. 
The relationship between the pair of (D(q), q) and (f (α),α) is decided by the Legendre transformation as:

Thus, we can use Eqs. (7) and (8) to calculate the multifractal spectrum f (α) , therefore, we can analysis the 
multifractality of the network by observing the spectrum.

(2)Closeness(v) =
1∑

u d(u, v)

(3)Betweenness(v) =
∑

s �=v �=t∈V

σst(v)

σst

(4)C =
3× number of triangles

number of all triplets

(5)C(G) =
1

|V ′|

∑

v∈V ′

c(v)

(6)C4,mn(i) =
qimn

(km − αimn)(kn − αimn)+ qimn

(7)α =
d

dq
[(q− 1)D(q)]

(8)f (α) =qα − (q− 1)D(q)
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Ethical approval. All animal procedures were carried out per approved protocols from the Institutional 
Animal Care and Use Committees (IACUC) at University of Nebraska Medical Center and University of Illinois 
Urbana Champaign, and in accordance with the recommendations in the Guide for the Care and Use of Labo-
ratory Animals of the National Institutes of Health. (Animal Assurance PHS: #A3294-01, Protocol Number: 
10-033-08-EP).
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