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Wide-field microscopy of optically thick specimens typically features 
reduced contrast due to spatial cross-talk, in which the signal at each point 
in the field of view is the result of a superposition from neighbouring points 
that are simultaneously illuminated. In 1955, Marvin Minsky proposed 
confocal microscopy as a solution to this problem. Today, laser scanning 
confocal fluorescence microscopy is broadly used due to its high depth 
resolution and sensitivity, but comes at the price of photobleaching, 
chemical and phototoxicity. Here we present artificial confocal microscopy 
(ACM) to achieve confocal-level depth sectioning, sensitivity and chemical 
specificity non-destructively on unlabelled specimens. We equipped a 
commercial laser scanning confocal instrument with a quantitative phase 
imaging module, which provides optical path-length maps of the specimen 
in the same field of view as the fluorescence channel. Using pairs of phase 
and fluorescence images, we trained a convolution neural network to 
translate the former into the latter. The training to infer a new tag is very 
practical as the input and ground truth data are intrinsically registered and 
the data acquisition is automated. The ACM images present much stronger 
depth sectioning than the input (phase) images, enabling us to recover 
confocal-like tomographic volumes of microspheres, hippocampal neurons 
in culture, and three-dimensional liver cancer spheroids. By training on 
nucleus-specific tags, ACM allows for segmenting individual nuclei within 
dense spheroids for both cell counting and volume measurements. In 
summary, ACM can provide quantitative, dynamic data, non-destructively 
from thick samples while chemical specificity is r ec ov ered c om putationally.

Three-dimensional (3D) cellular systems have been increasingly 
adopted over 2D cell monolayers to study disease mechanisms1 and 
discover drug therapeutics2, as they more accurately recapitulate the 
in vivo cellular function and development of extracellular matrices3. 
Three-dimensional cellular structures, including cellular clusters such 
as organoids and spheroids, have found use in a wide range of applica-
tions such as tissue engineering4, high-throughput toxicology5 and 
personalized medicine6. A particularly exciting direction of research 

is engineering multicellular living systems7–9. These fields of current 
scientific interest bring along the urgent need for new methods of inves-
tigation to inform on cellular viability and cell cluster proliferation. 
Such techniques would ideally provide quantitative data with subcel-
lular resolution at arbitrary depths in the cellular system and dynamic 
information rendered over broad time scales. Importantly, these assays 
would be completely non-destructive, that is, they would report on the 
cell cluster without interfering with its viability and function.
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The excitation light is typically toxic to cells, a phenomenon referred 
to as phototoxicity, whereas the exogenous fluorophores themselves 
can induce chemical toxicity17. Although the advancement of green 
fluorescent protein technology substantially improves the viability of 
the specimen under investigation, concerns regarding phototoxicity, 
photobleaching and functional integrity of the cells following genetic 
engineering still remain18. Overcoming these limitations becomes 
extremely challenging when imaging thick objects over an extended 
period of time and, for that reason, confocal microscopy is often used 
on fixed specimens19,20.

Multiphoton techniques, including harmonic generation and 
two-photon (intrinsic) fluorescence microscopy, have been established 
as valuable label-free approaches for deep-tissue imaging with cellular 
resolution. Multiphoton microscopy uses excitation light with a longer 
wavelength that penetrates deeper into tissues, whereas the nonlinear 
process requires a multiphoton interaction that renders 3D localized 
excitation21. However, multiphoton microscopy requires expensive 
instrumentations such as femtosecond lasers that are less accessible 
to the broader community, and the higher-order nonlinear excitation 
is more susceptible to focus aberrations and phototoxicity. Light sheet 
fluorescence microscopy can acquire 3D tomography of biological 
specimens in seconds with high optical sectioning and axial resolu-
tion due to the sheet-like illumination, minimizing the background 
fluorescence and photobleaching22. However, tomographic recon-
struction often requires sample rotation and sophisticated sample 
mounting. On the other hand, optical coherence tomography—an 
interferometric label-free method—was reported to detect and count 
aqueous cells in the anterior chamber of a rodent model of eye inflam-
mation23 and volumetrically quantify tumour spheroids24. Several 

Due to visible light wavelengths being comparable in size to sub-
cellular structures, optical methods of investigation are well suited 
for meeting these requirements; however, considerable challenges 
exist for the existing optical microscopy techniques when applied to 
increasingly thick samples. Typical spheroids—ranging from hundreds 
of micrometres to millimetres in size—are much larger than the scat-
tering mean free path associated with the light wave propagation, 
generate strong multiple scattering and therefore form optically turbid 
aggregates that are difficult to analyse at a cellular level10,11. As a result, 
high-throughput investigations often are limited to extracting coarse 
parameters, such as spheroid diameters, at low-magnification12.

In 1955, in his pursuit to image 3D biological neuronal networks 
and mimic their behaviour computationally, Minsky was faced with 
the challenge of suppressing multiple scattering, which was particu-
larly severe for the wide-field instruments available at the time13. In 
Minsky’s own words, “One day it occurred to me that the way to avoid 
all that scattered light was to never allow any unnecessary light to enter 
in the first place. An ideal microscope would examine each point of 
the specimen and measure the amount of light scattered or absorbed 
by that point”13. This first implementation of the confocal scanning 
microscope was established in a transmission geometry, requiring 
sample translation. Of course, today’s modern confocal instruments 
take advantage of bright laser sources, use beam scanning and are 
most often used in a reflection geometry, paired with fluorescence 
contrast14. In time, many other advanced laser scanning techniques 
have been developed for fluorescence microscopy15. Nevertheless, 
fluorescence imaging is subject to several limitations. Absorption of the 
excitation light may cause the fluorophore to photobleach, which limits 
the time interval over which continuous imaging can be performed16. 
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Fig. 1  | ACM optical path and image processing. a, The ACM system consists of 
a laser scanning confocal assembly, a DIC microscope and a LS-GLIM module. QPI 
was conducted with the green laser line (488 nm) of the confocal excitation. The 
interferogram was recorded at each point in the scan by the transmission-PMT 
(T-PMT). The fluorescence images were captured by the reflection-PMT (R-PMT) 

of the confocal module. b, Four phase-shifting frames are recorded and used to 
reconstruct the quantitative phase image. The confocal fluorescence image (FL) 
serves as the ground truth, whereas the phase image (LS-GLIM) is the input for 
the network training. NA, numerical apeture.
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phase-sensitive methods developed in a confocal modality have been 
recently developed, but their application to thick structures has been 
mostly unexplored25–28.

Quantitative phase imaging (QPI)29 has recently emerged as a 
potentially valuable label-free approach which, due to its high resolu-
tion and sensitivity, has found a broad range of new applications30. 
Although most applications involve thin specimens (cell monolay-
ers, thin tissue slices)31–33, several efforts have been made for thick 
multiple-scattering samples. A multilayer Born model using a first 
Born approximation at each of many layers has been proposed to 
provide phase reconstruction for thick samples34. Nevertheless, the 
maximum thickness presented in this model was around 30 μm, and 

the performance for 3D organoids with thicknesses usually on the order 
of 100 μm remains unclear. A multiscale reconstruction and stitching 
algorithm for optical diffraction tomography was recently developed 
to render refractive index distributions of 100-μm-thick colon tissues 
with subcellular resolution35. The epi-mode tomographic QPI method 
shows phase reconstructions of cerebral organoids and whole mouse 
brains with thicknesses of up to 60 μm via deconvolution36. Gradient 
light interference microscopy (GLIM)37,38 has been developed to sup-
press multiple scattering via white light, phase-shifting interferom-
etry, which allowed for imaging and analysis of quantitatively opaque 
structures such as spheroids and embryos with thicknesses of around 
300 μm. However, as a wide-field technique, GLIM has limited axial 
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Fig. 2  | ACM network architecture and inference. a, Network architecture 
for translating phase images into confocal fluorescence signals. It is a U-Net 
variant that uses an EfficientNet as the encoder. The input of the Efficient U-Net 
consists of three adjacent quantitative phase images along the z-axis, and its 
output is the corresponding middle fluorescent slice. b, Comparison of 2 μm 

bead (63x/1.3) tomograms in wide-field GLIM, LS-GLIM, confocal and ACM, 
as indicated. The elongation of the beads in wide-field and LS-GLIM is due to 
the missing frequencies in the transmission geometry. On the other hand, the 
predicted ACM images replicate the confocal sectioning and resolution. BN, 
batch normalization. Conv, convolution. ReLU, Rectified linear unit. 
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resolution and suffers from spatial cross-talk, which mixes diffraction 
contributions by neighbouring points from within the specimen. As a 
result, the accurate discrimination of cellular boundaries deep within 
a spheroid remains challenging.

Recent developments in artificial intelligence (AI) and machine 
learning have brought new opportunities to tackle these challenges. 
Deep learning enables super-resolution in fluorescence microscopy 
by training a generative adversarial network to transform confocal 
microscopy images to stimulated emission depletion images, as well as 
to transform total internal reflection fluorescence microscopy images 
to the total internal reflection fluorescence microscopy-based struc-
tured illumination microscopy images39. A deep neural network can be 
trained to virtually refocus a 2D fluorescence image onto 3D volumetric 
imaging without any axial scanning, additional hardware, or a trade-off 
of imaging resolution and speed. This framework is also capable of 
3D focusing a single wide-field fluorescence image to match confocal 
microscopy images at different focal planes40. An AI-based deep learn-
ing algorithm was developed for the automated quantification of the 
corneal sub-basal nerve plexus for the diagnosis of diabetic neuropa-
thy using corneal confocal microscopy images41. AI-assisted adaptive 
optics methods aim to compensate systematic and tissue-induced 
aberrations for imaging deep into turbid specimens42. Label-free pre-
diction of 3D confocal fluorescence images can be obtained from 
either transmitted-light microscopy images or electron micrograph 
inputs43. A label-free, volumetric and automated assessment method 
has been developed for immunological synapse using optical diffrac-
tion tomography and deep learning-based segmentation44.

In this Article, we report the artificial confocal microscopy (ACM), 
a laser scanning QPI system combined with deep learning algorithms, 
which renders synthetic fluorescence confocal images from unlabelled 
specimens. First, we developed a laser scanning QPI system, which is 
implemented as an upgrade module onto an existing laser scanning 
confocal microscope (LSM 900, Airyscan 2, Zeiss). We validated the 
boost in sensitivity and axial resolution of the new system by using 
standard samples and rigorous comparison with the wide-field coun-
terpart. Second, we derived a theoretical model based on the first-order 
Born approximation, which yields an analytic solution for the spatial 
frequency coverage of the laser scanning QPI system. These results 
were validated using experiments to measure the transfer function of 
the instrument. Third, we trained an artificial neural network on pairs 
of laser scanning QPI and fluorescence confocal images from the same 
field of view. As the QPI module is attached to the same optical path, 
generating the training data is straightforward and automated, as the 
fields of view are intrinsically registered. Fourth, we applied the infer-
ence of the computational neural network to monolayers of biological 
neural networks and found that the resulting 3D images mimic very well 
those of the ground truth from the confocal fluorescence images. Using 
these ACM images, we created binary masks for the contour of the cell 
and applied them back to the QPI (input) data. Our results show that 
the measurements of cell volume and dry mass of ACM versus confo-
cal agree very well. Fifth, we used the ACM images to perform nuclear 
segmentation and, thus, cell counting, within hepatocyte spheroids. 
We also showed that the training performed on spheroids suspended in 
phosphate-buffered saline (PBS) can transfer to specimens suspended 
in hydrogel, which promises broad applications in tissue engineering.

Results
The ACM imaging system consists of an existing confocal microscope 
augmented by a laser scanning GLIM system (LS-GLIM). Figure 1a illus-
trates the ACM set-up, which has three main modules: the LSM (LSM 
900, Zeiss), the differential interference contrast (DIC) microscope and 
the LS-GLIM module. The LS-GLIM assembly shares the laser source 
from confocal microscopy (see Methods). The two sheared beams that 
form the DIC image have their relative phase shift controlled by the 
liquid crystal variable retarder (LCVR), which was carefully calibrated 

to produce accurate phase shifts, as described in Supplementary Note 
1. For each π/2 phase shift, the transmitted light photomultiplier tube 
(PMT) records the resulting interferogram, as shown in Fig. 1b. The 
quantitative phase images are generated by the phase-retrieval recon-
struction and Hilbert integration algorithms described in the GLIM 
operation38. By sharing the same illumination path, the imaging system 
registers QPI z-stack images and pairs them with confocal fluorescence 
frames from the same field of view, which serve, respectively, as input 
and ground truth data for the deep learning algorithm (Fig. 1b,c). Due 
to the laser scanning illumination and PMT detection, the noise level is 
reduced by a factor of five compared with the full-field method (see Sup-
plementary Note 2); the spatial sensitivity of the phase images is thus 
improved. The ground truth data (that is, confocal fluorescence images) 
provide specificity with a high axial resolution and signal-to-noise 
ratio (SNR). Our goal is to use deep learning to infer the fluorescence 
confocal images from the LS-GLIM input data and thus replicate the 
confocal advantages on unlabelled specimens.

Multichannel EfficientNet-based U-Nets (E-U-Nets) were trained to 
translate the 3D phase image stack to the corresponding 3D fluorescent 
image stack. An E-U-Net comprises a standard U-Net where the encoder 
is replaced with an EfficientNet45 (Fig. 2a). The multichannel inputs of 
an E-U-Net are three neighbouring quantitative phase images along the 
z-axis, and the output is the corresponding central fluorescent image 
slice (see Methods). We chose this three-frame set as input to account 
for the fact that the axial spread in LS-GLIM data is much more pro-
nounced than in the confocal fluorescence data, primarily because the 
input image is obtained in a transmission geometry without a pinhole, 
whereas the output is in reflection with a pinhole or Airyscan detector 
array; thus, the neural network learns the spread mechanism from the 
three adjacent images and reverses it to produce a sharp ACM frame.

In Supplementary Note 3 we present a full description of the 3D 
image formation in LS-GLIM for weak-scattering samples, which starts 
with the inhomogeneous wave equation and considers scattering under 
the Born approximation46. The expression for the signal collected at the 
detector has a particularly simple and physical intuitive form,

s (ρ) ∝ χ (ρ)○∨ [Ud (ρ)U∗
i (ρ)] , (1)

where χ is the scattering potential of the specimen; Ud and Ui are the 
detection and illumination functions, defined as the Fourier transforms 
of their respective pupil functions; the asterisk represents complex 
conjugation and ⓥ denotes the 3D convolution in the spatial domain, 
ρ; the point spread function is therefore given by the product 
Ud (ρ)U∗

i (ρ), that is, it improves with both a tighter illumination focus 
and a broader detection pupil. Note that equation (1) is restricted to 
weakly scattering specimens such as the phase edge used to estimate 
the LS-GLIM coherent transfer function (see Supplementary Figs. 5 
and 6). These theoretical predictions are comparable with the experi-
mental measurements for various detection numerical apetures. As 
LS-GLIM uses elastic scattering and operates in transmission mode, 
the frequencies in the missing cone region of the coherent transfer 
function cause inferior axial resolution and sectioning compared to 
confocal fluorescence microscopy. Hence, we rely on the neural net-
work with confocal fluorescence images as reference.

Figure 2b compares images of a 2 μm microbead under wide-field 
GLIM, LS-GLIM, confocal fluorescence microscopy and the network 
inference, that is, the ACM image. The resulting ACM image is charac-
terized by its substantially lower axial blur compared with the LS-GLIM 
input. As described in the Supplementary Note 2, the sensitivity of 
LS-GLIM is superior to its wide-field counterpart due to the absence 
of spatial cross-talk and more sensitive photon multiplier detector. 
However, due to the transmission geometry, they are both inferior to 
the reflection confocal images in terms of axial sectioning. By contrast, 
the corresponding network inferences (that is, the ACM images) show 
much improved axial resolution and sectioning. The average Pearson 
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correlation coefficient (PCC) of the microbead is 98% and the peak 
signal-to-noise ratio (PSNR) is 46.3. The three adjacent LS-GLIM frames 
used as network input (see Methods for details) contain information 
about the field Laplacian along z, which governs the inhomogene-
ous wave equation (Supplementary Note 3) and may explain why this 
network architecture can produce adequate results in terms of 3D 
reconstructions.

We next applied ACM to imaging neural cultures. We used two 
common stains to tag the Tau and MAP2 proteins47 (see Methods), 
the ratios of which are a popular model for differentiating the long 
axon from smaller dendrites. The confocal fluorescence images from 
the two channels represent the ground truth and, as before, the cor-
responding LS-GLIM images were the input data. The training data 
contained 20 z-stacks of neurons at 10 days in vitro (DIV 10). The results 
are summarized in Fig. 3a–l. Our results indicate that the overall 3D 
renderings of the ground truth and their inferences match very well. For  
Fig. 3a–l, the PPC and PSNR of channel Tau are 80% and 26.9, respec-
tively, whereas they are 91% and 29.1, respectively, for MAP2. We occa-
sionally found some discrepancies in the dendrites, which translates 
into lower correlation values. The white arrows in Fig. 3f,l point to the 
axon of the neuron. ACM images reduced the pixel-level noise and 
confocal stripe artifacts present in the training data. In Extended Data 
Fig. 1 we compared the power spectra of the neurons from Fig. 3a–l 
using ground truth and ACM images. The 3D frequency coverage of 
the ground truth and ACM spectra agree, and both reach the theoreti-
cal confocal fluorescence resolution limits. The ACM data allow us to 
delineate individual cells accurately and measure their volumes. Sup-
plementary Video 1 illustrates this performance on live neurons that 
have never been labelled. Visually, it is evident that the ACM provides 
a much sharper decay of the out-of-focus light (that is, greater depth 

sectioning) than the original LS-GLIM. Supplementary Video 2 illus-
trates the time-lapse performance of ACM on unlabelled, dynamic 
neurons. Of course, the ACM images do not suffer from bleaching or 
toxicity while maintaining chemical specificity through computa-
tion. As a result, ACM is suitable for studying live cellular systems 
non-destructively over large periods of time.

From the ACM images, we computed binary masks corresponding 
to the cell contours, which were applied back to the input QPI maps 
to retrieve individual cell dry mass values. From the cell volume and 
mass, we also extracted the dry mass density for each cell. The volumes 
in Fig. 3m–o are rendered using binarized ACM-predicted MAP2, and 
the dry mass densities in Fig. 3p–r are calculated from ACM-predicted 
MAP2 segmentation and LS-GLIM phase images. The PPC and PSNR 
of channel MAP2 are 90% and 32.8, respectively, for Fig. 3m–r. Figure 
3s,t shows comparisons of the volume and dry mass associated with a 
single cell measured from confocal MAP2 and ACM MAP2 predictions. 
The average volume of a single cell is determined by the total volume 
per field of view divided by the number of cell body within the field of 
view. Our results indicate that the volume and dry mass measurements 
are well-matched with the ground truth, that is, there is not a significant 
difference between the two distributions (P-value >> 0.05).

To demonstrate ACM’s ability to delineate cellular structures 
inside turbid spheroids, we imaged hepatocyte spheroids (HepG2) 
suspended in PBS and generated computational stains associated 
with the DNA and RNA (Fig. 4a). The RNA is localized within the 
nucleus, with a high concentration in the nucleolus (Fig. 4b). The 
study of RNA is currently of high interest, not only as it plays a crucial 
role in catalysing cellular processes, but also as it can be used by vari-
ous viruses to encode their genetic information48. The two ground 
truth stains (7-aminoactinomycin D (7-ADD) and SYTO RNASelect 
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to identify the nucleus and dense concentrations of RNA inside the nucleus 
are associated with nucleoli. c, Three-dimensional comparisons of the ground 
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imputed signal. d,e, Total nuclear dry mass (ground truth (d), ACM (e)) tracks 
closely with total spheroid mass; PCC ρ = +0.65 (the slope of the linear fit is 0.42). 
These results agree well with the same procedure applied to the ground truth 
confocal images (d).
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Green; see Methods) and their associated inferences enable us to 
generate semantic segmentations and annotate the spheroid into 
nuclei and nucleoli, respectively. The entire spheroid represents 
our third class and is obtained as the non-background regions in 
the LS-GLIM data. As shown in Fig. 4c and Supplementary Note 4, 
the actual and imputed fluorescent maps show good agreement. 
The PPC and PSNR of channel DNA are 84% and 24.9, respectively. 
As detailed in Methods, we apply a threshold on the ACM and phase 
image to generate 3D semantic segmentation maps, which we use to 
measure the dimension of the spheroid. The intersection of the RNA 
and DNA labels provides the annotation for the nucleoli. Our results 
show that the total nuclear mass is proportional to the spheroid mass 
across the twenty spheroids studied in this work. This dependence 
is shown in Fig. 4d, where the slope of the linear regression (0.42) 
indicates that about 42% of the spheroid mass is contributed by the 
nuclei. These results agree well with the same procedure applied to 
the ground truth confocal images.

Automatic instance segmentation of cells inside spheroids was 
performed by 3D marker-controlled watershed on the estimated DNA 
signal. The markers were determined by 2D Hough voting on each 
slice in the z-stack basis (Fig. 5). Hough voting results in a volume with 
a unique marker on the spheroid, which resembles a column tracking 
the centre of the nucleus through the focus (see Methods for details). 
The result of the watershed is a 3D volume with a unique label for 
each nucleus within the spheroid, which enables the calculation of 
parameters on individual cells. To compare the mass, volume and 
mass density distributions, we computed the relative spread, σ/μ, 
where σ is the standard deviation and μ is the mean associated with the 

best Gaussian fit. Our data indicate that the nuclear density (Fig. 5d, 
σ/μ = 0.2) has a much narrower distribution than those of nuclear mass 
(Fig. 5b, σ/μ = 0.9) and volume (Fig. 5c, σ/μ = 0.8). These observations 
indicate that the dry mass density is a much more uniform parameter 
across different cells. Given the broad distribution of volumes and 
masses, this result shows that a change in volume is accompanied by 
an almost linear change in mass.

Discussion
The principles of AI and confocal microscopy were both formulated 
in the mid-1950s. Since then, the two technologies have taken inde-
pendent trajectories, with confocal leading to an entirely new class of 
scanning imaging modalities and AI giving rise to a variety of applica-
tions, from digital assistants to autonomous vehicles. Furthermore, in 
the past several years, it has become apparent that AI algorithms are 
valuable tools for extracting knowledge from optical images. As such, 
the two fields are intersecting again, and this combination seems to 
hold exciting prospects for biomedicine.

We developed ACM to combine the benefits of non-destructive 
imaging from QPI with the depth sectioning and chemical specificity 
associated with confocal fluorescence microscopy. Augmenting an 
existing laser scanning microscope with a QPI module (LS-GLIM) we 
can easily collect pairs of registered images from the phase (input 
data) and fluorescence (ground truth) channels, which allow us to 
generate co-localized ground truth–input pairs of images. As expected, 
the transmission quantitative phase image exhibits a much stronger 
elongation along the z-axis, as the scattering wavevector (or momen-
tum transfer) has a much shorter z-component than in the reflection 
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Fig. 5 | Automated segmentation of cells inside spheroids. a, Instance 
segmentation of spheroids was performed by 3D marker-controlled watershed 
on the ACM-estimated DNA signal, with markers being determined through 2D 
Hough voting on a per-z-slice basis. The result of the Hough voting is a volume 
with a unique marker on the spheroid, which resembles a column tracking the 
centre of the nucleus through the focus. The result of watershed is a 3D volume 

with a unique label for each nucleus within the spheroid, which enables the 
calculation of parameters on individual cells. b, Distribution of nuclear dry mass. 
c, Distribution of nuclear volume. d, Distribution of dry mass density; σ, μ and 
their ratios are indicated for each plot. Note that the nuclear mass density (d) 
has a much narrower distribution than the nuclear mass (b) and volume (c), as 
indicated by the σ/μ ratio.
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geometry. These pairs of images are used to train a neural network (Effi-
cient U-Net) to perform image-to-image translation from the LS-GLIM 
to the confocal fluorescence signal. The final ACM image presents the 
characteristics of the confocal image, with good axial sectioning and 
chemical specificity (see Figs. 2 and 3). Applying ACM to unlabelled 
cells allows us to non-destructively translate the confocal microscopy 
features to dynamic imaging (see Supplementary Videos 1 and 2). In this 
work we describe the image formation for weak-scattering samples in 
LS-GLIM. The theoretical model agrees with the experimental data on 
the system’s transfer function by imaging a phase edge.

Confocal geometry advances the QPI imaging capability in  
several ways, as follows. First, by illuminating one point at a time, 
the confocal geometry eliminates the spatial cross-talk that affects 
wide-field methods. With this illumination, the noise from the 
neighbouring points is lowered. Second, the PMT array provides a 
much more sensitive detection which, together with the first point 
above, yields overall higher sensitivity, both spatially and temporally, 
which we capture in our data. Third, the backscattering geometry 
yields higher axial spatial frequency coverage, resulting in stronger 
sectioning. This quality is obvious in our data, both ground truth  
and inference.

By overcoming the spatial cross-talk limitations associated with 
wide-field methods, ACM has the potential to provide new data for 
studying turbid cellular systems. Measuring quantitatively functional 
parameters from organoids and spheroids can be useful in a variety of 
applications of biological and clinical relevance. Using the artificial 
fluorescence images generated by the neural network, we segmented 
individual nuclei within the 3D structures, which can be used not just 
for cell counting but also for computing individual nuclear volumes. 
Furthermore, by creating annotations from the ACM images and 
applying them back to the input phase images, we extracted dry mass 
information from individual nuclei, independently from the nuclear 
volume. Our results indicate that, on average, 42% of the spheroid 
mass is contained in the nuclei. We also found that the nuclear dry 
mass density distribution is much narrower than the volume and mass 
counterparts. Nevertheless, ACM images can differ from confocal 
fluorescence images. The potential source of error could come from 
the training corpus including the confocal fluorescence images and 
LS-GLIM phase images. Specifically, LS-GLIM phase images lack sen-
sitivity to spatial frequencies within the missing cone region, while 
the confocal fluorescence images are affected by variations in the 
staining level. Moreover, the contrast in LS-GLIM images comes from 
the intrinsic inhomogeneity of refractive index distributions in tissues, 
resulting in much more details compared to the confocal fluorescence 
counterparts.

Finally, we demonstrated that the network training can be trans-
ferred between spheroids suspended in different media with no addi-
tional training, which provides versatility to our technique. However, 
the accuracy of prediction is lower than those of spheroids in PBS, 
which is expected since the shape of the spheroids in PBS and hydro-
gel is quite different, and the network is never trained on those data. 
We anticipate that ACM can be potentially adopted at a broad scale 
because the LS-GLIM module can be readily added to any existing 
laser confocal system, while the data for training can be acquired 
with ease. ACM provides complementary information to that from 
other laser scanning techniques, as the acquisition is not limited by 
photobleaching and toxicity, while the axial resolution is maintained 
at confocal levels.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
ACM system
The experimental set-up for ACM is a multichannel imaging system, 
which consists of confocal microscopy (LSM 900, Zeiss) and LS-GLIM. 
The LS-GLIM module upgrades a laser scanning confocal microscope 
outfitted with DIC optics by providing phase-shifting assembly capabil-
ity (Fig. 1a). The laser scanning interference microscope shares the same 
two-laser lines (488 nm, 561 nm) of the confocal microscope. The laser 
source from the confocal microscopy goes up through the matched 
DIC prism and objective (×63, ×40) and then is scattered by the sample. 
After the sample, the light is collected by the condenser of the DIC 
microscope. The light then travels through the phase-shifting assembly, 
which consists of an LCVR (Thorlabs) followed by a linear polarizer. We 
removed the analyser that normally sits inside the condenser to allow 
the liquid crystal to modulate the phase shift between the two orthogo-
nal polarizations. The stabilization time of the LCVR is approximately 
70 ms. Four intensity frames are recorded by the photomultiplier tube 
(PMT, Zeiss) corresponding to each π/2 phase shift, as shown in Fig. 1b. 
The acquisition time of each frame is approximately the same as for a 
confocal fluorescence image, which depends on the dwell time and 
pixel numbers set for the image acquisition. The dwell time for all the 
images was chosen to be 1.2 μs, such that the acquisition time is ~3.7 s 
for an image with 1,744 × 1,744 pixels. The quantitative phase images 
are generated in real-time by the phase-retrieval reconstruction algo-
rithm and Hilbert transform algorithm38. The system registers pairs of 
z-stack images from both the confocal fluorescence and quantitative 
phase, which serve, respectively, as ground truth and input images for 
machine learning (Fig. 1b). The z-sampling was chosen to be 0.2 μm, 
0.2 μm and 1 μm for microbeads, neurons and spheroids, respectively. 
The x–y sampling was 0.09 μm for all of the data presented in this paper.

Network training
We trained E-U-Nets with paired phase and fluorescent images. The 
input channels of an E-U-Net are three neighbouring phase slices, and 
the output is the corresponding central fluorescent slice. This net-
work design allows an E-U-Net to use information from phase images 
acquired at multiple neighbouring imaging planes to better predict 
the fluorescent image.

The network architecture of a multichannel E-U-Net is shown in  
Fig. 2a and Supplementary Fig. 7. It represents a modification of a stand-
ard U-Net where the encoder is replaced with an EfficientNet45. The 
EfficientNet generally has a powerful capacity for feature extraction 
but is relatively small in network size. Training an E-U-Net from scratch 
can be challenging when the number of paired phase and fluorescent 
images is limited. A transfer learning strategy was used in the E-U-Net 
training to mitigate this challenge. Specifically, the weights of the 
EfficientNet encoder were initialized with weights pre-trained on an 
ImageNet dataset49 for an image classification task. The ImageNet is a 
benchmark image set that contains millions of labelled nature images.

In this study, a neuron dataset, a spheroid cell dataset and a bead 
dataset were used for training, validating and testing the E-U-Nets, 
respectively. The neuron dataset contained 22 image stacks that each 
contained 300 neuron phase images of size 1,744 × 1,744 pixels and 
their related two-channel fluorescent images, which correspond to 
fluorescent signals from Tau and MAP2 proteins, respectively. The 
spheroid cell dataset contained 21 stacks that each contained 100 
spheroid cell phase images of size 1,744 × 1,744 pixels and the related 
two-channel fluorescent images, which correspond to fluorescent 
signals from DNA and RNA, respectively. The bead dataset contained 
eighteen image stacks that each contained 250 bead phase images of 
size 128 × 128 pixels and the associated fluorescent images. To facilitate 
network training, the pixel values in each fluorescent image stack were 
scaled to a range of [0, 255.0]. This was accomplished as: 
xo = 255.0 × xi−x0.01%

x99.99%−x0.01%
, where x0.01% and x99.99% represent the 0.01%th and 

99.99%th values among all the pixel values in the image stack after they 

were sorted in non-decreasing order; xi and xo represent the original 
and scaled value of a pixel, respectively. The estimated fluorescent 
image stack was subsequently rescaled to its original range  
using xi =

xo
255.0

(x99.99% − x0.01%) + x0.01%. For those image stacks without 
ground truth values, the ̂x0.01% and ̂x99.99% can be estimated as the aver-
age of x0.01% and x99.99% related to the ground truth values in the  
training set.

Considering the limited number of image stacks in the three 
datasets described above, a threefold cross-validation approach was 
employed to train and validate the E-U-Nets after a few testing image 
stacks were held out for E-U-Net testing. For a given dataset in which 
the testing stacks have been held out, the threefold cross-validation 
approach involves randomly dividing all the stacks in the dataset into 
three folds of approximately equal size. The first two folds and the 
remaining one-fold were treated as a training set and a validation set to 
train and validate E-U-Nets, respectively. The procedure was repeated 
three times; each time, a different fold was treated as the validation 
set. The three procedures resulted in the validation of the E-U-Nets on 
each image stack. The trained E-U-Nets were finally tested on the held 
out unseen testing samples. Details related to the cross-validation 
of E-U-Nets on the neuron, spheroids cell and bead datasets are  
described below.

For the neuron dataset, two separate E-U-Nets were trained: 
one to translate phase images into each of the two-channel fluores-
cent images. The EfficientNet-B7 network was employed in the two 
E-U-Nets. The network architecture of the EfficientNet-B7 is shown 
in Supplementary Fig. 7. Two neuron image stacks were held out as 
unseen testing data; the remaining twenty stacks were employed in 
the threefold cross-validation process described above. In the three-
fold cross-validation process, the twenty image stacks were randomly 
divided into three folds that contained six, seven and seven image 
stacks, respectively. For each data split, the E-U-Nets were trained by 
minimizing a mean square error (MSE) loss function that measures 
the difference between the predicted fluorescent images and their 
corresponding ground truth values. The loss function was minimized 
by the use of an ADAM optimizer50 with a learning rate of 5 × 10−4, which 
was empirically determined. In each training iteration, a batch of paired 
three neighbouring phase images and the corresponding central fluo-
rescent image were sampled from the training image stacks and then 
randomly cropped into patches of 515 × 512 pixels as training samples 
to train the networks. The batch size was set to four. A decaying strategy 
was applied to the learning rate to mitigate the overfitting by multi-
plying the learning rate by 0.8 when the validation MSE loss did not 
decrease for consecutive epochs. An epoch is a sequence of iterations 
that walk through all the image slices in the training set. The validation 
MSE loss was computed between the predicted fluorescent images 
and their ground truth values for validation images. In the network 
training, an early stopping strategy was employed to determine the 
end of the network training. Specifically, at the end of each epoch, the 
being-trained E-U-Net model was evaluated by computing the average 
of the PCCs between the predicted fluorescent images and the related 
ground truth values. The network training stopped if the average valida-
tion PCC did not increase for twenty epochs as shown in Supplemen-
tary Fig. 8. The two figures show the average training and validation 
stopping rule metric for training the two E-U-Nets respectively in one 
of the three training procedures of the threefold cross-validation pro-
cess. After the E-U-Nets were trained, the performances of the trained 
networks were evaluated on the validation set by computing the PSNR 
and PCC between the predicted fluorescent stacks and the related 
ground truth values. The threefold cross-validation process resulted 
in validation results for each of the twenty stacks. These validation 
results were combined and are reported in Supplementary Note 4. The 
E-U-Nets trained in the cross-validation process were also tested in the 
two unseen stacks. The corresponding PCCs and PSNRs are presented 
in Supplementary Note 4.
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For the spheroids cell dataset, two separate E-U-Nets were 
trained for each fluorescent channel. The EfficientNet-B7 network 
was employed as the encoder in the two trained E-U-Nets. Two spheroid 
cell image stacks were held out for E-U-Net testing; the remaining nine-
teen stacks were randomly split into three folds that contain six, six and 
seven stacks, respectively, in the three-fold cross-validation process. 
The other training settings were the same as those described above for 
network training on the neuron dataset. The training and validation 
PCCs over epochs correspond to training the two E-U-Nets in one of 
the three training procedures of the three-fold cross-validation process 
are displayed in Supplementary Fig. 9. The threefold cross-validation 
results related to PSNRs and PCCs are reported in Supplementary  
Note 4. The results tested on two unseen testing stacks are also shown 
in Supplementary Note 4.

For the bead dataset, a single E-U-Net was built for the phase-to- 
fluorescent image translation. EfficientNet-B0 was employed as the 
encoder in the E-U-Net. The architecture of the EfficientNet-B0 network 
is shown in Supplementary Fig. 7. One of the bead image stacks was held 
out as an unseen testing stack for the E-U-Net testing; the remaining 
seventeen bead stacks were randomly divided into three folds that each 
contains five, six and six image stacks, respectively, for the threefold 
cross-validation process. Paired images of size 128 × 128 pixels were 
employed for the E-U-Net training. The batch size was 32. The other 
training settings were the same as those for the network training on 
neuron and spheroid cell datasets, as described above. The training 
and validation stopping rule metric over epochs for one of the three 
training procedures of the three-fold cross-validation process are 
displayed in Supplementary Fig. 10. The threefold cross-validation 
results related to PSNR and PCC performances are reported in Supple-
mentary Note 4. The results on the unseen bead stack are also shown 
in Supplementary Note 4.

The E-U-Nets were implemented by use of the Python program-
ming language with libraries including Python 3.6 and TensorFlow 1.14. 
Model training, validation and testing were performed on an NVIDIA 
Tesla V100-GPU with 32 GB VRAM. E-U-Net training on the neuron data-
set and spheroid dataset took approximately 24 h. E-U-Net training on 
the bead dataset took approximately 2 h. The inference time for a fluo-
rescent image slice of 1,744 × 1,744 pixels was approximately 400 ms.

Neuron analysis
The volume of neurons was calculated from the ACM images using 
binary masks with background thresholding. The 3D dry mass distribu-
tion was generated with the multiplication of binary masks and the 3D 
dry mass distribution from the QPI images51. The 3D dry mass density 
is linearly related to the depth-resolved phase maps as

M(x, y, z) = λ
2𝜋𝜋γδz

ϕ(x, y, z), (2)

where λ is the wavelength of the illumination and the refractive incre-
ment γ ≃ 0.2, which lies within the 0.18–0.21 ml g–1 range for most 
biological samples52; δz represents z-sampling, which is ~1 μm for our 
LS-GLIM; ϕ(x, y, z) is the measured phase image on each z-plane.

Spheroid analysis
Three-dimensional semantic segmentation maps were generated from 
the estimated fluorescent signals corresponding to the RNASelect and 
7-ADD stains by applying fixed thresholds for the entire data. This map 
of RNA- and DNA-stained regions was further refined by assigning a 
nucleoli label to the RNA inside of the DNA regions. To generate a map 
labelling the spheroid, a threshold was applied to the quantitative 
phase signal after Hilbert demodulation51. Fields of view were acquired 
to contain a single spheroid, and phase values coincident with the 
assigned label (nucleus, spheroid) were totalled on a per-spheroid 
basis to report on the dry mass and volume.

Automated 3D cell counting
To segment our images into individual nuclei, we used a 3D variation 
of the marker-controlled watershed on the estimated DNA images53. 
We note that the ACM data lacked the unwanted pixel-level noise typi-
cally associated with photon-starved fluorescent images. This tech-
nique requires the image to be annotated into sample and background 
regions with a non-overlapping marker used to identify the cell. We 
performed 2D Hough voting which is used to identify the centre of 
the nucleus in each z-slice, producing what resembles a curve through 
the z-dimension. To regularize our approach, we applied a 3 × 3 blur 
to correct for minor disconnects in our segmentation algorithm. The 
result of our watershed approach is a 3D volume with a unique label 
annotating each nucleus (Fig. 5a). To validate our method, we com-
pared our results to a manual cell count performed in AMIRA (version 
5.4.3)54. We obtained 142 cells counted automatically versus 136 cells 
counted manually (4% error). The principal disagreement was due to 
undercounting touching cells. This procedure was implemented in 
MATLAB using the imfindcirlces and watershed commands.

Sample preparation
Hippocampal neuron preparation. All procedures involving animals 
were reviewed and approved by the Institutional Animal Care and Use 
Committee at the University of Illinois Urbana-Champaign and con-
ducted per the guidelines of the US National Institute of Health. For our 
neuron imaging experiments, we used primary hippocampal neurons 
harvested from dissected hippocampi of Sprague–Dawley rat embryos 
at embryonic day 18. Dissociated hippocampal neurons were plated 
on multiwell plates (Cellvis, P06-20-1.5-N) that were pre-coated with 
poly-d-lysine (0.1 mg ml–1; Sigma-Aldrich). Hippocampal neurons were 
incubated for 3 h at 37 °C and under 5% CO2 in a plating medium con-
taining 86.55% Eagle’s MEM with Earle’s BSS (Lonza), 10% foetal bovine 
Serum (refiltered, heat-inactivated; ThermoFisher), 0.45% of 20% (wt/
vol) glucose, 1 equiv. 100 mM sodium pyruvate (100x; Sigma-Aldrich), 
1 equiv. 200 mM glutamine (100x; Sigma-Aldrich) and 1 equiv. penicil-
lin/streptomycin (100x; Sigma-Aldrich) to help attachment of neurons 
(300 cells per mm2). The plating media was aspirated and replaced 
with maintenance media containing Neurobasal growth medium sup-
plemented with B-27 (Invitrogen), 1% 200 mM glutamine (Invitrogen) 
and 1% penicillin/streptomycin (Invitrogen) and incubated for 10 days 
at 37 °C, in the presence of 5% CO2. Hippocampal neurons were main-
tained for 2 weeks before performing immunostaining.

Immunostaining protocol
Neurons were stained with antibodies for Tau (Abcam, ab80579) and 
MAP2 (Abcam ab32454) to localize axons and dendrites. Neurons 
were fixed with freshly prepared 4% paraformaldehyde for 15 min fol-
lowing 0.5% Triton-X for 10 min and 2% bovine serum albumin (BSA, 
ThermoFisher) for 2 h incubation in 4 °C. Hippocampal neurons were 
incubated for 8 h at 4 °C with anti-Tau antibodies that were diluted to 
1:250 in 5% BSA. After washing with PBS, neurons were exposed for 8 h 
at 4 °C to goat anti-mouse secondary antibody (Abcam, ab205719) 
which was diluted to 1:500 in 5% BSA. Hippocampal neurons were then 
incubated in anti-MAP2 antibody (1:500 dilution) in 5% BSA for 8 h, 
followed by goat antirabbit secondary antibody (Abcam, ab205718, 
1:1000 dilution) in 5% BSA for 8 h at 4 °C.

Liver cancer spheroid (HepG2 cells)
Human hepatocarcinoma cells (HepG2, ATCC) were cultured in 
T-75 flasks with DMEM (Thermo), 10% foetal bovine serum and 1% 
penicillin-streptomycin (Gibco) for 7 days, leading to spontaneous 
pre-formed spheroids. The flasks were incubated at 37 C and 5% CO2. 
The media were replaced every two to three days. Spheroids were incu-
bated with TrypLE Express (Thermo) for 10 min to detach pre-formed 
spheroids of approximately ~100–200 μm in diameter from the culture 
flask. The passage number used was between two and six.
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Pre-formed spheroids were plated on poly-d-lysine coated 
glass-bottom dishes. The spheroids were incubated for 10 min to allow 
for attachment. They were then covered with a collagen hydrogel 
(bovine collagen type 1, Advanced Biomatrix). The cells were incu-
bated for three days to allow for cellular reorganization into a regular 
spheroidal shape. The spheroids were first fixed in a 1:1 ratio of metha-
nol: acetone at −4 °C for 20 min. Cells fixed using this method do not 
need an additional permeabilization step due to the acetone. The cell 
nucleus was stained using 7-AAD (red, 6163, ThermoFisher) by adding 
1 μl of the stock stain into 1 ml of PBS. The cell RNA was stained using 
SYTO RNASelect Green (S32703, ThermoFisher) by first creating a 
5 μm working solution and then adding 100 μl of the working solution 
to 900 μl of PBS. The samples were stained at room temperature for 
30 min before rinsing once. Two types of samples in PBS or hydrogel 
were imaged after staining.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Due to size considerations, the data that support the findings of this 
study are available from the corresponding author on reasonable 
request.

Code availability
The code that supports the findings of this study are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Comparison of ground truth to ACM power spectra 
from Fig. 3a–l. Contours circumscribing theoretical resolution limits of 
confocal fluorescence system (ground truth) are shown in as red dotted circles. 
The theoretical lateral resolution of the system is 0.22 μm (NA = 1.3, 1 Airy Unit 
(AU), excitation wavelength at 561 nm), corresponding to a maximum lateral 

frequency of 14.3 rad/μm. The theoretical axial resolution of the system is about 
0.50 μm, corresponding to a maximum axial frequency of 6.3 rad/μm. The 3D 
frequency coverage of the ground truth and ACM spectra agree, and both reach 
the theoretical resolution limits.
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