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Abstract: In this paper, we present a novel interpretable machine learning technique that
uses unique physical insights about noisy optical images and a few training samples to classify
nanoscale defects in noisy optical images of a semiconductor wafer. Using this technique,
we not only detected both parallel bridge defects and previously undetectable perpendicular
bridge defects in a 9-nm node wafer using visible light microscopy [Proc. SPIE 9424, 942416
(2015)], but we also accurately classified their shapes and estimated their sizes. Detection and
classification of nanoscale defects in optical images is a challenging task. The quality of images
is affected by diffraction and noise. Machine learning techniques can reduce noise and recognize
patterns using a large training set. However, for detecting a rare “killer” defect, acquisition
of a sufficient training set of high quality experimental images can be prohibitively expensive.
In addition, there are technical challenges involved in using electromagnetic simulations and
optimization of the machine learning algorithm. This paper proposes solutions to address each
of the aforementioned challenges.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

According to Gartner’s September 2016 article [2], a cutting-edge chip manufacturing plant
can cost ∼$5-10 billion. A 20% decrease in wafer yield can result in a ∼ $1 billion per year
decrease in the gross margin for fabrication plants. Scanning electron microscopy (SEM), atomic
force microscopy (AFM), and other electron beam (e-beam) defect inspection tools are widely
used for nanoscale defect inspection because of their excellent resolution [3–5]. However, these
tools have low areal inspection throughput and can be destructive. Thus, optical microscopy
plays a crucial role in defect detection because of its ability to non-destructively image large
areas at high speeds. Mass production of the 9-nm node started in late 2016. Because the
light scattering from a deep subwavelength defect is extremely weak, optical defect detection is
quite challenging in small node size wafers that have background device patterns. The signal to
noise ratio (SNR) for the defect signature compared to the noise from the line edge roughness
(LER) of the background patterns is poor. Researchers at NIST used a 193 nm microscope and
through-focus scanning to enhance the sensitivity of 9-nm node defect detection [6]. Previously,
our group applied diffraction phase microscopy (DPM) and noise reducing methods to detect
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defects in a 22-nm node wafer [7]. In that paper, we presented the second order differential image
stitching and convolution (2DISC) image post-processing technique and showed how it reduces
the effects of specific sources of noise and system imperfections. Later, we applied DPM and
2DISC to successfully detect a 9-nm parallel bridge defect using a visible light source (405-nm
laser) [1, 8]. Although we added through-focus scanning [8] and broadband illumination [1],
we were unsuccessful at detecting a 9-nm perpendicular bridge because of its much weaker
scattering signature compared to the background and noise.
Computational electromagnetic (EM) modeling is used in many optical metrology methods,

e.g., scatterometry and through-focus scanning [6,9, 10], to generate best-fit simulated images
based on the experimental configuration and a priori sample info. Inferences can then be made
about wafer features from the measurements. However, challenges arise, for example, when: (1)
the a priori sample info is inaccurate, (2) the simulation domain is truncated because of finite
computational resources, (3) the devices have intrinsic fabrication noise such as LER, or (4) the
measurements are done in a noisy or non-ideal environment.
Machine learning and pattern recognition techniques are investigated widely for facial

recognition, flaw detection, and microscopy [11–21]. However, the effectiveness of machine
learning in microscopy and sensing depends critically on the quality of the training sets. In
nanotechnology applications, it is challenging to obtain large amounts of experimental data
for training, testing, and validation because creating appropriate test wafers and making the
measurements are costly and time consuming. The data may also be inaccessible because of
non-disclosure restrictions. An alternative strategy is to use simulated data for the training set;
however, the exact dimensions of the features in the experimental sample may not be known and
thus the simulation may not accurately reflect the actual sample. In addition, generating a large
library of simulated data for machine learning may be computationally expensive.

To solve the aforementioned limitations of machine learning and challenges of EM modeling,
we propose a novel machine learning technique. Principal component analysis (PCA) is a
pattern recognition technique that is suitable for image compression and denoising [22]. We
transform a few approximate electromagnetic simulation defect images to generate synthetic
noisy defect images with trainable parameters such that its principal components can sufficiently
capture variance related to the defect features. There are two challenges in implementing
this approach. Firstly, the principal components must capture variance related to the defect
features. Secondly, the captured variance should contain sufficient feature-related information
to distinguish defect and no-defect images. We overcome these challenges by formulating a
hypothesis about frame-to-frame varying noise in optical images and use it to generate synthetic
images with defect feature dependent noise. In addition, we provide a physical explanation of our
technique.
We use the models obtained during the learning stage to successfully detect, classify, and

size various flaws and irregularities in the sample from the measured experimental microscope
wafer images. It is extremely difficult even for experts to visually distinguish the defect signals
from the other intensity signals and to classify defect shapes or sizes from the optical intensity
images. In particular, we studied parallel and perpendicular bridge defects in a 9-nm node wafer.
We found the previously undetectable perpendicular defects even in non-optimal experimental
settings without specifically training the model to this defect type and even estimated its size.
This size and shape classification is a significant new contribution of this paper compared to our
prior work.

2. Microscope images

This section provides information about the experimental optical images used for training,
validating, and testing the machine learning technique. A 9-nm Intentional Defect Array (IDA)
wafer made by SEMATECH was used for the experiments. This wafer has numerous square
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dies of size 100 µm × 100 µm with a single nanoscale defect in the middle of the underlying
pattern. Each die has a different nominal size and shape for the central defect. Examples of the
parallel bridge (BX67 type, i.e., the designed linewidth for the defect is 67% the linewidth of the
pattern) and perpendicular bridge (BY67 type) defects are shown in the SEM images in Figs.
1(a) and 1(b), respectively. Besides the central intentional defect, the wafer has other patterning
irregularities such as LER, e-beam stitching errors, and contamination. The LER is quite visible
in Figs. 1(a) and 1(b). Figures 1(c) and 1(d) show an e-beam stitching error and nanoscale
dust, respectively. We collected experimental intensity images for the parallel bridge defect die
using an epi-illumination bright-field microscope that included an xy in-plane translation stage.
We also collected experimental intensity images for two different types of defects imaged using
the same microscope and translation stage in the interferometric DPM configuration [1,8, 23].
The data set contains some data previously presented in [1] along with additional data that has
not been previously published. The DPM images are used as a common benchmark dataset for
quantifying the performance improvement of the new machine learning algorithm relative to
the results in [1]. The purpose of using intensity images from both interferometric DPM and
non-interferometric measurements is to obtain images with different types and levels of noise to
evaluate the robustness of the proposed machine learning technique. These microscope images
are post-processed as described in Section 3.4. The post-processed interferometric microscope
images of different defect types are displayed in Figs. 1(e) and 1(f). The 2DIS post-processing
scheme (i.e., 2DISC without the convolution step) is applied to the microscope images [7].
2DIS consists of second order difference (2DI) and image stitching. 2DI removes additive
time-invariant spatial noise such as laser speckle, camera shot noise, or system imperfections. It
also acts as a high pass filter that enhances the defect related signal. Image stitching removes
temporal noise due to non-uniform illumination or camera responsivity. Throughout this paper,
each pixel in an optical image corresponds to 31.3 nm × 31.3 nm. Experimental images were
captured using a Hamamatsu C4742-80-12AG camera in a custom microscope that has a 40× 0.9
numerical aperture objective lens with an additional back-end 4-f magnification system consisting
of a f = 75 mm and a f = 400 mm lens to provide a total magnification of ∼ 213×. Additional
details of the optical imaging system used to obtain the interferometric and non-interferometric
images are described in [1, 8, 23].

It is time-consuming to obtain SEM images shown in Figs. 1(a) - 1(d) and this process can also
leave the dark charging stains on the wafer. On the other hand, finding defects and classifying
their shapes and sizes directly from the optical intensity images of Figs. 1(e) and 1(f) is not
possible because of the background noise.

Fig. 1. SEM images of a typical (a) parallel bridge defect, (b) perpendicular bridge
defect, (c) e-beam stitching error, and (d) region with nanoscale dust. Microscope
image after 2DIS post-processing of the (e) parallel and (f) perpendicular bridge defect
dies.
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3. Framework and inference

Figure 2 is a summary block diagram of the machine learning technique to classify defect
signals in the intensity images. We use a post-processed microscope image and information
from simulated defects for training and optimizing the process for generating the synthetic defect
image library, Lsyn. Optimization enables the model to generate Lsyn for classifying defects
in previously unexposed microscope images. We will use a top-down approach to define key
algorithm parameters first, then overview the inference process that uses the optimized Lsyn

obtained in the learning process. Next, we will explain the learning process and then explain the
post-processing of optical images along with our unique hypothesis about noisy optical images.
Finally, we proceed to discuss data transformation for generating the synthetic set.

Fig. 2. Overview of the proposed approach. Given approximate simulated defect images,
the set of random numbers, and a microscope image, we learn model parameters, w∗,
which can be used to generate an optimized synthetic defect library, Lsyn, which can
classify an experimental image as showing a defect or no defect. Section 3.6 provide
image generation algorithm details.

3.1. Algorithm parameters

As shown in Fig. 2, two hyper-parameters sets Msim and H k,t , whose values are fixed before the
learning process begins and the trained model parameters w∗ = (w1,w2) ∈ R2 are the inputs to the
inference. Msim is a noise-free set consisting of one simulated image of a defect of a given shape
and size plus the peak intensity values from this image and from four other simulated images of
defects of the same shape but slightly different sizes. We use Monte Carlo to mimic random
experimental errors with H k,t = (hk,t

1 , hk,t
2 ) : hk,t

1 , hk,t
2 ∈ R. We generate k ∈ {1, ... ,K = 125}

Gaussian random number pairs for a single trial t and perform t ∈ {1, ... ,T = 20} trials.

3.2. Inference

The goal of inference is to classify the given post-processed and PCA-transformed noisy
microscope image block I n

PP as a defect or no-defect. Here, I n
PP(x, y) ∈ RH×W represents

n ∈ {1, ... , 106} post-processed and transformed intensity images in the Cartesian co-ordinate
system with the height H and width W . We introduce labels zn ∈ {0, 1} to denote the ground
truth in a given I n

PP . Here, (z = 0) denotes absence of a defect and (z = 1) denotes presence of a
defect. Additional inference goals include classifying the defect by shape and size. In a trial t, we
use the synthetic defect images J k,t

syn(x, y,w∗,Msim,H k,t ) ∈ L t
syn; J k,t

syn ∈ RH×W obtained
after optimization in the learning process. We apply PCA to Lsyn

t (x, y,w∗,Msim,H k,t )
during the process described in Section 3.6 to obtain the eigenvectors v and weight vectors
Γsyn

k,t (v,w∗,Msim,H k,t ). We similarly transform I n
PP(x, y) to obtain Γsynk,t (v). For each
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I n
PP(x, y), we select a single Jsyn

k∗,t (x, y,w∗,Msim,H k∗,t ) as its closest match, i.e., the image
with minimum Euclidean distance (ED) from I n

PP(x, y) in the eigen space:

k∗ = arg min
k

{
λs
−2����ΓPP

n(v) − Γsynk,t (v,w∗,Msim,H
k,t )

����2}, (1)

EDn,t (I n
PP, v,w

∗) = λs−2����ΓPP
n(v) − Γsynk

∗,t (v,w∗,Msim,H
k∗,t )

����2. (2)

Here, λs is the eigenvalue corresponding to a synthetic defect eigenvector. The eigen vectors
are selected such that 99% variance is retained in PCA. By dividing the distance by λ2

s , we reduce
the effect of noise present in the synthetic images. EDn,t measures the similarity of the generic
features between the experimental and synthetic defect intensity images. Because of the eigen
space transformation, EDn,t depends not only on I n

PP but also on the entire synthetic defect
image set, Lsyn

t . The inference for I n
PP(x, y) is performed using:

ẑn = ϕ
[〈
ϕ

(
EDn,t ≤ c × min

n′∈{1,... ,106 }
{EDn′,t }

)〉
t

≥ 1
2

]
. (3)

where ϕ is the indicator function on the truth of a proposition. The value of c is explained in
Section 4. Intuitively, ẑn is computed by calculating generic similarities between the experimental
and synthetic defect images using the principal components of the optimized synthetic images
over T repetitions of varying noise.

3.3. Learning

As described in Fig. 2, we need a dataset G =
{
(IPP

n, zn)n=1
N
′
,w,Msim,H k,t

}
. Here, N

′ are
sampled blocks obtained in Section 4 such that one image is of the intentional defect, denoted
with an index n0, and all the other blocks are no-defect images. The goal of the learning stage is
to obtain Lsyn

t (x, y,w,Msim,H k,t ) such that for a w = w∗, the principal components of this
synthetic set sufficiently capture the variance related to the experimental defect features. Based
on distinguishing features, we want to be able to identify defect block (IPP

n0, zn0 = 1) as a
defect in comparison to the defect-free blocks {(IPP

n, zn = 0) : ∀n , n0}. The approach is to
transform images such that those of the same class are more alike in the projected space. We
optimize the synthetic image generation process to obtain w∗ using a distance function f that
measures the fraction of trials, i.e, the probability, for which the intentional defect is detected:

fw(G ) =
〈
ϕ

[
EDn0,t (I n0

PP, v,w) ≤ c × min
n′∈{1,... ,N ′ }

{EDn′,t (I n
′

PP, v,w)}
]〉

t

. (4)

We hypothesize that the approximate defect information from the synthetic defect set provided
in v would be sufficient to reject other no-defects after the learning and we aid the learning
process by utilizing the ED for the no-defect block that most closely resembles the synthetic
defect set. The factor of c is the margin that accounts for the fact that the simulated data has
only approximate defect feature information. We define the loss function for optimization in the
following manner. We re-scale the probability using a sigmoid function:

Pw(zn0 = 1|G ) = 1
(1 + exp[− fw(G ) ])

. (5)

The first loss function for the learning stage is defined by the negative log-likelihood:

Loss1,w = − log
[
Pw(zn0 = 1|G )

]
. (6)
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The loss function is concise because of the use of principal components. It is expected that
the optimized loss function would satisfy the condition in Eq. (4) for at least T

2 of the trials.
Such an optimization would indicate that we can usually classify images correctly despite the
measurement errors. The synthetic data set contains features for defect size estimation as well.
We can select a second loss function for including explicit incorrect defect size based information:

Loss2,w = − log
[
Pw(zn0 = 1|G )

]
− log

[
1 − Pw(zn0 = 1|G ′)

]
. (7)

Here, Pw(zn0 = 1|G ′) is the re-scaled probability of identifying a defect using a synthetic
library created with incorrect simulated defect sizes. We have compared the performance of
three different loss functions in this paper: (1) Category 1: Eq. (6) with an added condition that
we label any synthetic image with a relatively large intensity variation as an undesired defect
(i.e., z = 0). We achieve this by incorporating a condition that the index of the synthetic image
matching the experimental image must be below 78 because images with such indices represent
smaller intensity variations. Hence, we have labeled synthetic image data, instead of including
an explicit size-based constraint. (2) Category 2: We use Eq. (7). (3) Category 3: We use
Eq. (7) with different start points and c value combinations than the previous two categories.
The outcome of optimization for the loss functions from Table 1 is described in Table 2. The
optimization algorithm is explained in Appendix A. The value of c is further tuned during the
Validation Stage.

Table 1. Loss functions
Categories Start point

(w2,w1)
Value of c

Category 1 (2,3) 1.0
Category 1 (1,3) 1.2
Category 2 (2,3) (z=1) 1.0, (22-nm , z=0) 1.1
Category 2 (1,3) (z=1) 1.0, (22-nm , z=0) 1.2
Category 3 (4,5) (z=1) 1.1, (22-nm , z=0) 1.1
Category 3 (2,4) (z=1) 1.0, (22-nm , z=0) 1.1

3.4. Post-processing of microscope images

Experimental microscope images are extremely noisy. This section presents the post-processing
scheme to denoise the experimental images and it also presents a crucial hypothesis for synthetic
image generation. Figures 1(e) and 1(f) show the post-processed experimental optical images of
the BX67 and BY67 defects. We observed that the central defect in the experimental images
has different SNR in each camera frame because of the presence of noise and other systematic
errors. We also observed variations in the SNR for different vertical stitching error regions even
under the same experimental conditions. Hence, we concluded that different types of defects
would display different scattering signatures for a given experimental setting not only because
of differences in their specific sizes, tilts, and deviations, but also because of the added noise.
During the experiment, spatially dependent noise from the scattered signal of the background
pattern of lines is present in each frame. A single camera image Iimage(x, y) measures the
interference between this dominant scattering field of the background, Eb(x, y), and the weak
scattering field produced by the defect, Ed(x, y) in x, y coordinate system. We introduce a term
Mbd , which will be used throughout this section:

I image(x, y) = Ib(x, y) + 2Re [Eb(x, y) · Ed(x, y)] + Id(x, y), (8)

I image(x, y) ≈ Ib(x, y) + Mbd(x, y). (9)

Here, I = |E|2 denotes the intensity of the respective fields and Mbd = 2Re [Eb · Ed] is the
mutual interference of the background and defect fields. The mutual interference, Mbd, varies
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from frame to frame both because of small fluctuations in the intensity of the light source and
because of the LER and other patterning irregularities. Further, the periodicity of the unit cell of
the pattern is of comparable size to the diffraction limit and so the spatially varying interference
is partially resolved in the collected images. We can model both of these effects by writing,
Mb(x, y) = Mb0 + ∆Mb(x, y), where Mb0 is the average intensity of the interference, which
is mostly affected by the fluctuations in the intensity of the light source, and ∆Mb(x, y) is the
spatially varying remnant of the partially resolved interference image, which is affected by the
LER and other patterning irregularities. These two effects result in defect signatures that appear to
have distortions, i.e., the optical image of the defect signature looks different in each frame. The
post-processing method was designed to minimize frame-to-frame variations in the background,
Ib(x, y) from Eq. (9), while preserving the defect signal [7]. Images are collected as the sample
is translated a distance dx between frames by a mechanical stage. Then, the post-processed image
that forms a tripole pattern for a defect signal is calculated in software as:

IPP(x, y) ≡ Iimage(x + dx, y) − 2Iimage(x, y) + Iimage(x − dx, y). (10)

To remove the dominant background intensity Ib(x, y), the translation distance dx is chosen to
be an integer number of periods of the background pattern. Thus,

IPP(x, y) ≈ δMbo(x, y) + Mbd(x + dx, y) − 2Mbd(x, y) + Mbd(x − dx, y). (11)

Here, δMb0 is a constant offset in intensity that would be zero if the light source intensity and
the interference did not vary from frame to frame. Although we have removed the dominant
spatially varying background signal, there can still be noticeable variations in the interference
between the defect signal and the background Mbd in different frames. Thus, most but not all
of the frame-to-frame noise from the background has been removed. At the defect location,
the 2DIS image has what we call a tripole pattern, which is a spot in the center and two spots
with an opposite sign located at a distance of ±dx from the center. All the experimental images
used in this paper are post-processed and form this tripole pattern. The image obtained after
post-processing is IPP(x, y) that depends on the frame-to-frame varying mutual interference,
Mbd. This frame-to-frame varying formulation of Mbd in Eq. (9) and Eq. (11) provides the
physical explanation for noisy image formation, i.e., it is because of the interaction of physical
features and the background noise. Some noise remains in the experimental images even after
the post-processing. We apply PCA to further reduce noise. Experimental and simulation images
have different sizes and normalizations. We crop the experimental image to ∼ 106 sliding window
image blocks of size B, the value of which is determined in the Section 4.

3.4.1. Physical insight and assumptions

We form critical assumptions on the basis of the above hypothesis and formulations. First, we
assume that the noise in the background pattern affects the peak value of the scattered intensity
of a defect differently in each experimental image. Second, we assume that the peak scattered
intensity values of a defect contain the most important information about the defect size. This
is reasonable because the strength of Rayleigh scattering decreases rapidly as the defect size
decreases. The third assumption is how the scattering peak intensity, which depends on the defect
size and shape, interacts with mutual interference Mbd(x, y). Because Mbd varies from frame to
frame, it appears that the peak intensities in different frames for a given defect correspond to
defects of slightly varying sizes. When we take a 2nd order difference to form a tripole pattern,
we typically obtain an asymmetric tripole pattern with different peak intensities at each pole.
These assumptions about the outcome of the interaction between physical defect features and
background noise place importance on the distinguishing physical features of the defects in the
noisy images. We will utilize these assumptions for generating synthetic images.
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3.5. Input for synthetic dataset generation

To obtain synthetic image data set, we first need to perform EM simulations of different types
of defects to obtain Msim. See references [24–26] for details of the simulation method. Figure
3(a) shows a zoomed in view of the simulation geometry for the parallel bridge defect. Figure
3(b) shows the resulting simulated optical intensity image. In order to evaluate whether our
machine learning technique can accurately detect, classify, and size the defects, simulations
were performed for both types of defects with sizes ranging from 18 nm to 46 nm with a 2-nm
step using the same experimental settings for both types of defect. The simulated data contains
the approximate size and shape of the defect for the labeled training experimental image. We
choose to simulate the 32-nm defect. In order to include the effect of Mbd on measurements,
we use the peak intensity values from the four slightly varying defect sizes: 28, 30, 34, and
36 nm. To account for the defect dimensions in the training sample, we simulated across a
size range for the defect width that contains the nominal design value and is wide enough to
account for the typical fabrication error margins. The 32-nm image is called Mseed(x, y) and
max(Mj); j ∈ {1, 2, seed, 4, 5} are the peak intensities for images Mj(x, y). We will combine
these to form Msim = {Mseed, {max(Mj)j=1

5}}.

Fig. 3. (a) Zoomed in simulation geometry for a parallel bridge defect. The field of
view is 900 nm × 900 nm. (b) Raw simulation intensity image.

Although we used powerful EM algorithms, our three-dimensional simulation volume was
limited because of memory constraints. Thus, the raw simulated images have artifacts because of
domain truncation. In addition, the simulations do not capture the random noise and systematic
noise in the experimental data. As shown in the Figs. 1(a) and 1(b) SEM images, the LER is
a significant fraction of the line width. Moreover, the exact 3D cross-sectional shape of the
structure (e.g., rectangular or trapezoidal) is not known. Hence, it is extremely challenging to
model the sample accurately.

3.6. Processing for synthetic dataset generation

The objective of this section is to describe the process of generating the trainable synthetic defect
library shown in Fig. 2 using hyper-parameters Msim from Section 3.5, trainable parameters
w = (w1,w2) (determined during the learning stage), and a microscope image from Section 3.4.
We will introduce the details of the second hyper-parameter H k,t subsequently. We perform five
steps to generate a diverse library of synthetic images. Figure 4 shows key intermediate results.
Step 1 (Peak intensity transformations): To address noise and artifacts in the raw simulated

data, we extract defect-specific info, crop and scale the image, and observe the variations in
peak intensities. We subtract the background image (i.e., pattern with no defect) from each
image of the pattern with a defect to obtain a set of Mbd(x, y) for simulation images Mj from
Msim. We crop the images to remove boundary artifacts from domain truncation. See Fig. 4(a).
Next, we zero pad the images. We call the output image intensities M ′j . The following linear
transformation is performed on images using trainable parameters w1,w2 using the assumptions
from Section 3.4.1 to form a set of five numbers:

S =
{
w1 max(M ′j )

}
; j ∈ {1, ... , 5}. (12)
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Fig. 4. Images at various steps of synthetic library generation process. Processing of a
simulated image showing the (step 1) (a) extracted defect and (b) processed defect, (step
2) (c) 2nd order difference, (step 3) (d) Gaussian blur and (e) Gaussian noise, and (step
4) (f) Cropped final synthetic defect image that has a tripole pattern. Post-processed
experimental image blocks after cropping and normalization, showing (g) a parallel
defect image. (h) A typical edge-based signal that needs to be rejected as a parallel
defect.

We multiply the seed image (e.g., 32-nm) with a different trainable constant, w2, and denote
this image as w2 M ′

seed
. We offset the seed image to match the peak intensities of S . Next, we

generate image library Aj ; j ∈ {1, 2, 3, 4, 5} that is the outcome of Step 1:

Aj(x, y) = w2 · M ′seed(x, y) + (δMbo)j , (13)

(δMbo)j =w1 ·max (M ′j )−w2 ·max (M ′seed). (14)

Thus, our set consists of the seed image normalized by w2 with five different constant offset
values (δMb0)j . The differences in our transformed images are thus proportional to w1:

Aj − Ak = w1 ·max(M ′j ) − w1 ·max(M ′k). (15)

Eq. (13) and Eq. (14) provides constraints for the optimization process of the learning stage. We
restrict w1 > w2 ≥ 1 to ensure that each intensity image in the data set has non-negative values at
each pixel according to Eq. (13) and Eq. (14). The lower bound on w2 also preserves adequate
spatial variation in the intensity images. The images in Eq. (13) are physically meaningful
if the offset (δMb0)j is small compared to w2 · M ′

seed
(x, y). This puts an upper limit on w1.

Zero-padding makes the images in Aj large enough for performing 2nd order difference similar
to Eq. (10). See Fig. 4(b). Next we used data conversion to create intensity variation in the
images by converting the data type from double to unsigned 16-bit integers and back to double to
mimic the processing that occurs with the experimental images.
Step 2 (2nd order difference and H k,t ): To obtain the tripole defect pattern, the microscope

stage is translated. However, the translation distance is not perfectly repeatable and varies between
24-32 pixels. To emulate this experimental error, we used a Monte Carlo approach where we
generated k ∈ {1, ... ,K = 125} Gaussian random numbers, using Dmean = 28 pixels for the
mean translation distance and 2 pixels for the standard deviation. We obtained hyper-parameter
H k,t of 125 Gaussian random number pairs in trial t generated for the microscope image
translation distance. We conduct T = 20 trials for each classification. We shifted the simulated
frames for the defect by H k,t and calculated the 2nd order difference to obtain 5×5×5=125
different tripole images. There are 125 images because we include all combinations of the 5
intensity variations Aj for each of the 3 different image frames. We choose 5 images for two
reasons. Firstly, we need to distribute the difference w1M ′j − Aj for the entire set symmetrically.
Hence, we need odd number of images to select the middle image as a seed image. Secondly, we
require some minimum number of images to apply PCA and extract meaningful features out of it.
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Image stitching is not performed for the simulation images because they are already free of any
nonuniform illumination errors. See Fig. 4(c).
Step 3 (Gaussian blur and Gaussian noise): There are unphysical edge effects because of

the zero padding. Hence, we apply a Gaussian blur with the width comparable to the diffraction
limit to not lose features. The blur improves robustness to noise. The peak intensity trends in the
images are thereby disturbed. We scale and crop to focus on defect peak intensities. We apply a
kernel that captures noise characteristics along with anti-aliasing and peak intensity-based linear
transforms. See Figs. 4(d)-4(e), and Fig. 5. The steps are adapted from [27–30].

Fig. 5. Gaussian noise transformation.

Step 4 (Cropping, variations): We crop the simulation to match the block size of the
experimental images. This blocks size is determined in the sampling stage. The cropping is
done in such a way that it encourages more variance by comparing the left and the right tripole
distance average with the Dmean. The cropping pixel is shifted to the left by one pixel when the
right tripole distance average is more than the mean tripole distance. We perform data conversion
between double to unsigned 16-bit integers to double as in Step 1. The outcome of the Step is a
noise-added synthetic defect image set L t

syn(x, y,w,Msim,H k,t ) . See Fig. 4(f).
Step 5 (PCA transform): The resulting dataset has large dimensionality and features. We

apply PCA to obtain a transformed representation of the dataset and to extract generic features
of the synthetic image set and obtain eigen vectors v. The weight vector of the transformed
synthetic microscope defect image set is Γsynk,t (v,w,Msim,H k,t ).

The post-processed and transformed microscope image blocks such as Figs. 4(g) and 4(h) are
also transformed in the same eigen space v to obtain ΓPP

k,t (v) before the learning and inference
stages. We use sampled blocks from Section 4 for the learning stage and all the sliding window
image blocks for the inference stage. The trainable parameters generate diversity in the synthetic
library because w2 affects the mean intensity and (w1,w2) affect the variations in the intensity.

4. Implementation

Before the learning stage, we sampled the input image blocks to obtain N ′ representative image
blocks using IPP

n; n ∈ {1, ... , N ≈ 106} of size B using the following method for the image in
Fig. 6. Figure 6 shows a 2DI experimental image for the parallel bridge defect before applying
PCA (SNR = 13.6 dB) and after applying PCA (SNR = 20.9dB). Stitching errors and noisy edges
were less prominent than the central defect.

Fig. 6. Parallel defect image with 2nd order difference. (a) Before and (b) after PCA.

We generated Lsyn
t (x, y,w,Msim,H k,t ) images using the 32-nm parallel defect seed image.

In sampling stage 1 , we obtained 51 image blocks that are either the real defect or quite similar
to it. As expected, the detection rate of the real defect was below 50% for our the intermediate
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model. These 51 blocks are clearly the blocks that are most critical for the algorithm to learn
how to differentiate. We test the effectiveness of this sampling using the Category 1 loss function
in sampling stage 2. We have used modified gradient descent optimization from Appendix A.

Algorithm 1 Outline of sampling stage 1.
1: Gradient descent optimization
2: Input (w1,w2) = (1.5, 1.0); Initial step size 0.05; α = 0.05; Trials T = 1; N ≈ 106

3: repeat . minimization using gradient
4: Lossw = 〈{EDn0,t (IPP

n0, v,w)}〉t=1 to T

5: Update wi
it+1 ⇐ wi

it − α∇̂iLossw . ∇̂i is the numerical partial gradient w.r.t. wi

6:
7: until Iterations it exceed 100; wi follows the constraints in Section 3.6
8: Outcome 1: w∗ = (7.39, 4.52) intermediate synthetic defect model that corresponds to the

minimum EDn0

9: Model testing
10: Input: w∗ model; trials T = 20; N ≈ 106; c = 2.1 later c = 1.2 to reduce redundancy due to

sliding window blocks :Execute Inference Eq.(3)
11: Outcome 2: N ′ = 51 image blocks that are either the real defect or quite similar to it
12: Final outcome B∗ = 34 × 91, N ′ = 51

Algorithm 2 Outline of sampling stage 2.
1: Modified gradient descent optimization
2: Input: (w1,w2) = (3, 2) with an initial step size of 1.0; Trials T = 20; N ′ = 51 sampled

blocks from Sampling Stage 1
3: repeat . minimization using modified gradient
4: Category 1 Loss function from Section 3.3
5: Update wi using the update rules from Appendix A
6:
7: until iterations it exceed 30; wi follows the constraints in Section 3.6
8: Outcome 1: w∗ = (3.2529, 2.2342) intermediate synthetic defect model
9: Model testing
10: Input: w∗ model; trials T = 1; N ≈ 106; c = 1.1 to reduce redundancy due to sliding window

blocks :Execute Inference Eq.(3)
11: Outcome 2: True defect z = 1 and 2 additional defect-like positions detected;
12: Add these two defect-like positions to original N ′ = 51 to obtain N ′ = 53
13: Final outcome N ′ = 53 sampled image blocks

4.1. Learning optimized models and validation

We used N ′ = 53 sampled blocks and applied the loss functions from Section 3.3 to obtain the
optimized models. Table 2 shows the optimized results. We used 22-nm simulated seed defect to
generate incorrect defect size data-set G ′ for Eq. (7). The simulated defect seed information is
described in Appendix B.
It is important to note the large initial values for the cost function, i.e., the starting programs

had low defect detection rates. By design, the algorithm is very sensitive to and exhibits
non-linear behavior with variations in w1 and w2 . Changes in the third decimal digit of
w1 or w2 are significant because the algorithm steps amplify certain effects in the synthetic
library images and the resulting eigen vectors. After optimization, we analyzed the results
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Table 2. Models obtained during training stage. The experimental sample used for
training consisted of N’ non-interferometric image blocks for the parallel defect die.

Categories for the
loss function

Loss function
at start point:
Cost(w2, w1)

Loss function at localminimum:
Cost(w2, w1)

Model
label
id

Category 1 Cost(2,3) = 0.513 Cost(1.9368,3.0164) = 0.387 1A
Category 1 Cost(1,3) = 0.474 Cost(1.035, 3.00) = 0.371 1B
Category 2 Cost(2,3) = 1.563 Cost(1.9991,3.0124) = 1.153 2A
Category 2 Cost(1,3) = 1.716 Cost(1.2947,3.2558) = 1.153 2B
Category 3 Cost(4,5) = 1.369 Cost(3.9684,4.9959) = 1.338 3A
Category 3 Cost(2,4) = 1.775 Cost(1.9862,3.9850) = 1.168 3B

using c = 2.1. Next, we reduced the number of redundant image blocks in the result to obtain
1.0 ≤ c ≤ 1.5 for all the models. Model 3A works well for 1.5 ≤ c ≤ 2.1. The allowed values of
c ∈ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1}. Beyond this range, data redundancy due
to sliding window images and false detection rate diminishes the performance.

For the validation stage, we used all N ≈ 106 blocks instead of N ′ = 53 blocks. The outcome
of the models is a list of image block positions that are determined as defects and their ED. Then,
we use c = 2.1 on the outcome list to reduce data redundancy due to the sliding window method.
Next, we used following criteria to lower the value of c further and reduce the data redundancy
without lowering the maximum detection frequency: the same value of c from the allowed c
values is selected for the models of the same category. Model 3A detects the central defect in the
whole die image during the training-validation stage for c = 1.5 with higher false positive rates.
We select c = 1.1; as a result all other models performed well and had 100% precision (i.e., no
other defects, e.g., stitching error or nanoscale dust, were detected above the 50% detection rate
threshold). Figure 7 shows the results for the precision and recall rates of the models.

Fig. 7. (a) Precision, and (b) Recall for the models from the three different categories
for the parallel bridge defect for the entire die image.

It is important to evaluate the predictive ability and robustness of each model for previously
unused combinations of input simulation and experimental images. We used the perpendicular
defect simulated data with another parallel defect experimental frame from the same die. This
frame is shifted horizontally and has different noise than in the previous case. As expected, the
parallel bridge defect is not identified in this case as a perpendicular bridge defect. The models
are robust against shape misclassification. For model 2B, there is a defect detected with 55%
detection rate in a block with corner pixel location (819, 211). This detected defect could be due
to nano-scale dust and needs further investigation.

This program was executed on a desktop machine with an Intel Xeon 2-processor CPU with 28
cores and 128 GB memory. It was developed in MATLAB using the parallel computing toolkit.
It takes a minute to generate and store the synthetic image library, which is a one-time activity for
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a given defect shape and size classification. It takes 2 minutes to collect, process, and reconstruct
through PCA all N ≈ 106 sliding window experimental images on a disk. It takes an additional
2 − 3 minutes to format the eigen distance information for these 106 images and perform the
moving average of the reconstructed sliding window images. The reconstructed images are used
for visualization purposes. In the future, batch processing and higher computing power resources
can reduce the time significantly.

5. Inference results

5.1. Shape classification

We learned themodels using sampled unstitched non-interferometricmicroscope image containing
a parallel bridge defect. We validated the models using the unsampled original image. In addition,
we validated the robustness of models against shape misclassification using another unstitched
non-interferometric microscope image. We use the criteria developed in the validation stage
for lowering the value of c for the outcome of the models and obtain the defect positions and
frequency of detection for all the trials.

We evaluated the models for shape based prediction using the 2DIS parallel defect die image
and a 32-nm ‘H’ shaped synthetic set for the defect. The results of initial PCA are displayed
in Fig. 8. The SNR was 16.6 dB initially and 20.3 dB after PCA. We evaluated the confusion
matrix of the selected classifiers. For testing with the ‘H’ shape image, we used c = 1.2 on the
outcome defect list. For many models, the detection rate was above 50%, i.e., certain wafer
regions were classified as containing a defect. Table 3 shows the results. The SEM image in Fig.
8(c) shows that there is a stained region at the left edge. Corner parameters of (453, 13), (516, 14),
and (548, 71) in Table 3 correspond to different parts of the stain. The ‘H’ shape defect here
means, unevenness in the width, separation, or tilt of the bars in the underlying pattern.

Fig. 8. Parallel defect image with 2DIS processing. (a) Before and (b) after applying
PCA (c) SEM image of the region displaying stain.

Table 3. Defect detection with 32-nm seed.
Model Detection

rate
Defect corner id

1A 70% Left edge (548, 71)
1B 100% Left edge (459, 13) andCentral defect
2A 85% Left edge (516, 13)
2B 0% No defect detected
3A 85% Left edge (516, 14)
3B 70% Left edge (453, 13)

The imaging system cannot directly resolve these irregularities, but the models are sensitive
to them and have revealed to us the previously undetected stain region. To validate robustness
against shape mis-classification, we used the parallel defect synthetic set on the perpendicular
defect experimental data. For all six models, the central defect was never detected. Instead,
the models find the stitching error region defects or edge defects because of their similarity to
parallel bridge defects. See Appendix C for details.
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5.2. Shape and size classification

The size of the nanoscale defect is related to the intensity of the defect signal in the experimental
image. The models work by targeting the differences in physical features embedded in the noisy
image. Thus, we will consider both precision and detection rate values for size-based detection
in the noisy images. Figure 9 shows how the different models estimate defect shape and size in
different types of experimental images.The performance for size detection is better for less noisy
2DIS interferometric parallel bridge defect even though the models were not trained with any
interferometric images. Figures 9(j) and 9(m) shows a typical Euclidean distance map for model
2B for the parallel defect and for model 3B for the perpendicular defect, respectively. Compared
to the parallel defect, the perpendicular defect has a weaker scattering signature as can be seen by
comparing Figs. 9(k) and 9(n). The reconstructed images in Figs. 9(l) and 9(o) are obtained by
projecting Figs. 9(k) and 9(n), respectively, into the eigen space of the synthetic defect images,
and by adding the mean image of the respective synthetic defect library. The defect optical
images are better reconstructed using the synthetic image eigen space in comparison to the rest
of the optical images; thereby showing the effectiveness of the PCA transformed optimized
synthetic images. The perpendicular defects were not visible even after 2DIS processing and
initial denoising using PCA, which is why our machine learning technique is needed to provide
the eigen distance map for detecting the perpendicular defect. As shown in Figs. 9(g) - 9(i), the
models are able to successfully detect and classify the perpendicular bridge defect. The detection
rate for the 32-nm synthetic perpendicular defect library for the perpendicular defect image
is more than the 50% threshold and thus the algorithm correctly classifies the defect location,
shape, and size. The other defect positions may have been identified as a 22-nm defect because
those regions have similar characteristics to 22-nm wide defects. It is important to note that the
accuracy in all the cases is close to 100% due to high true negative rate. See Appendix D for
details.
Table 4 summarizes the capabilities of the six models. The postprocessed optical images

used in Table 4 are obtained from both interferometric and non-interferometric measurements,
and have varying SNR levels from 9.9 dB to 23.5 dB. Despite this variation in the SNR, each
model correctly identifies the shape of the defect. Because size-based and shape-based inferences
are combined, size rejection requires stronger targeting of size-based differences compared to
shape-based similarity in a noisy image. All models generalize because they can target size-based
and shape-based feature differences.

6. Summary

It is quite difficult even for image experts to detect a defect, classify its type, and estimate its size
from the microscope images because the defect signal is indistinguishable from the background.
We therefore developed a novel interpretable machine learning algorithm for automatic detection
and classification of defects that uses only a few training samples. We interpret the algorithm as
a multi-prong approach to mitigate simulation artifacts and target distinguishing defect features
buried in the mutual interference of the background and defect fields. We have utilized the
denoising abilities of PCA and overcome the challenges of using principal components for
classification and of the limited availability of experimental defect images. We developed a
modified gradient descent algorithm for efficient optimization of loss functions.

One downside of the method is the long overall computation time associated with the sliding
window step. A second key limitation is that for generalizing this method to other types of
images, e.g., phase images, the researcher must add physical insight appropriate to the image
type, i.e., the function of the trainable parameters must be decided.
Nevertheless, we successfully validated and tested the models using images with different

experimental configurations (interferometric versus non-interferometric) and with different defect
types (parallel versus perpendicular bridge). These images had varying noise levels and different
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Fig. 9. Shape and size classification for 2DI non-interferometric image with parallel
bridge defect for models (a) 1A, 1B (b) 2A, 2B (c) 3A, 3B. Classification for 2DIS
interferometric image with parallel bridge defect for models (d) 1A, 1B (e) 2A, 2B (f)
3A, 3B. Classification for 2DIS interferometric noisy image with perpendicular bridge
defect for models (g) 1A, 1B (h) 2A, 2B (i) 3A, 3B. All models successfully detect
the perpendicular defect when using the 32-nm seed because their detection rate was
above the 50% threshold that was set for deciding defect versus no-defect. (j) Eigen
distance map identifies the parallel defect indicated with the light color box. It has the
smallest Euclidean distance and thus is correctly identified. (k) Parallel defect identified.
(l) Reconstructed defect. (m) Eigen distance map identifies the perpendicular defect
indicated with the light color box. This region has the smallest Euclidean distance
and thus is correctly identified. (n) Identified region for the perpendicular defect in
the optical image is buried in the noisy background. (o) Reconstructed perpendicular
defect image.
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Table 4. Performance of the six models for different experimental and simulation inputs.
All models successfully identify negative test cases and properly reject the incorrectly

shaped simulation defects.
Image Type Performance Model

1A 1B 2A 2B 3A 3B
2DI non-interferometric
of the parallel defect Rejects 22-nm parallel 7 7 7 X X 7

Classifies 32-nm parallel 7 X 7 X X 7

Rejects 42-nm parallel X 7 X X X X
2DIS DPM image of the
parallel defect Identifies ‘H’ defect stain X X X 7 X X

Rejects 22-nm parallel X X X X 7 X
Classifies 32-nm parallel X X X X 7 X
Rejects 42-nm parallel X X X X 7 X

2DIS DPM image of the
perpendicular defect Rejects 22-nm perpendicular X X X X X X

Classifies 32-nm perpendicular X X X X X X

frames had different defect positions. We used a unique sampling process to reduce the size of
the training set without affecting the performance. As part of our algorithm, we used a modified
Euclidean distance scheme to reduce the impact of synthetic image noise. We presented the
six different optimized models to infer the presence of defects and classify their shapes and
sizes. The SEM measured the defect size to be 30.5-31 nm. Thus, the classification system
accurately sizes the defects even though they are an order of magnitude smaller than the diffraction
limit. In all cases, our true negative rate was extremely high. Hence, our accuracy is close to
100%. The technique successfully makes generic inferences on untrained defect types and sizes.
For semiconductor inspection applications, researchers can utilize LER estimation with design
parameters to obtain initial simulation images for the learning stage.

Appendix A Modified gradient descent

There are many gradient descent algorithms that work well for optimization of smooth functions
[31–33]. However, our loss function is not analytically differentiable because it is a sum of
indicator functions. Even the numerical approximation for the gradient using forward difference
approximation can be arbitrarily large and thus adversely affect these algorithms. It would be
time-consuming to evaluate the numerical approximation of the gradient in all directions. To
address these problems, we propose a modified gradient descent technique to evaluate numerical
gradient descent for the loss functions of Eq. (6) and Eq. (7). The function is piecewise
smooth and we clamp the derivatives at relatively non-smooth points. Equation (17) decides
the relative smoothness of the point by comparing its numerical differentiation with the past
weighted gradient. The loss function is defined in the domain for numerical differentiation. We
have borrowed concepts from [32–34] to implement the modified gradient descent. Let ∇̂ denote
the discrete numerical approximation that extends the concept of the gradient operator for the
loss functions. On iteration i, we compute the step sizes, ∆w1i and ∆w2i , using:

m1i = (1 − β1)
(
∇̂Lw · ŵ1

)
; m2i = (1 − β1)

(
∇̂Lw · ŵ2

)
, (16)

ui = max(β2 × ui−1, | |∇̂Lw · ŵi | |), (17)

Vol. 27, No. 13 | 24 Jun 2019 | OPTICS EXPRESS 17758 



∆w1i = −
α

1 − β12

(
m1i
ui

)
; ∆w2i = −

α

1 − β12

(
m2i
ui

)
. (18)

The goal is to find the point of minimum loss in w1, w2 space. We do this by computing the
directional derivatives of the loss with respect to w1 and w2. We measure the loss at three
points: Lw(w1, w2), Lw(w1+∆w1, w2), and Lw(w1, w2+∆w2) and calculate the forward difference
approximations [Lw(w1+∆w1, w2)-Lw(w1, w2)]/∆w1 and [Lw(w1, w2+∆w2)-Lw(w1, w2)]/∆w2,
respectively. Equation (17) provides information about the relative smoothness of the loss surface
at a point. If the gradient in Eq. (17) is too steep compared to the previous gradient, we clamp
the gradient by normalizing it. This prevents instability from using too large of a step. On
the other hand, if the current point is relatively smooth, then it results in a gradient-dependent
reasonable step size. Thus, the algorithm moves with either a constant or a variable but reasonable
learning rate based on the update rules. This is useful for tackling the exploding gradient issues
in optimization [31] for loss functions with large gradients. We use constraints on w derived
from Step 1 of Section 3.6. Finally, we have the option to use a constant step size β3 to pull the
gradient from plateaus and to confine the function in the constrained domain. We can initialize
the step size, ∆w, to ± β3 and reset the gradient descent when the numerical gradient is less than
a threshold, i.e., | |∇̂Lw · ŵi | | < ε. Once | |∇̂Lw · ŵi | | ≥ ε, we can again apply the gradient update
rules from Eq. (16)-(18). The optimization typically requires less than 30 iterations even for
different starting points and different loss functions. We used the following constant values: β1 =
0.9; β2 = 0.999; ||β3|| = 0.25; α = 0.03. We kept the values of β1 and β2 the same as was done by
Kingma et al. in [32]. We initialize the step size to 1.0 for both w1 and w2.

Appendix B Simulated seed data

The model training is done using the rectangular shaped simulated defects. We optimized
the model for selecting classifier parameters for defect shape and size detection during the
learning phase. The testing stage consists of a 22-nm, 32-nm, and 42-nm seed rectangular-shaped
defect. In addition, we have used ‘H’ shape simulated defects in the testing stage for the shape
classification. The width variation along the longer sides is: width 27.5 nm. See Fig. 10. Table
5 presents the peak scattering signatures for defects with different sizes and shapes.

Fig. 10. (a) Shape of rectangular-shaped simulated defect images. (b) Shape of defects
for H shape image is formed by subtracting the background pattern of parallel bars
from a pattern with defect.

Table 5. Peak intensity trends in the denoised simulated mutual interference images for
various seeds.

Parallel defect ‘H’ shaped de-
fect

Perpendicular
defect

Seed 22-nm 32-nm 42-nm 32-nm 42-nm 22-nm 32-nm
max(M1) 9.32 26.00 62.82 33.57 231.89 197.51 271.81
max(M2) 11.74 32.28 72.07 66.49 278.30 224.63 278.80
max(M3) 14.66 38.91 82.78 101.85 325.72 226.95 285.49
max(M4) 17.86 46.22 93.77 141.09 372.95 238.06 302.52
max(M5) 21.90 54.17 103.74 185.30 416.32 261.24 318.62
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Appendix C Defect shape classification

Table 6 summarizes the cross-classification results. It is evident that only stitching or edge region
errors are detected by using the parallel defect model to detect defects in the perpendicular bridge
defect die. Stitching error regions are a tilted form of the parallel bridge defect and so they are
detected with the parallel defect model. There is a high rate for true negatives for the entire die.
All models correctly reject the central region as a defect.

Table 6. Defect detection 32-nm.
Model Detection

rate
Defect id Precision =

TP/(TP+FP)
1A 60% Edge-based (122, 12) 100%
1B 60% Stitching error region (716, 266) 52%
2A 0% No defect detected 0%
2B 80% Stitching error region (719, 265) 59%
3A 65% Edge-based (754, 40) 100%
3B 65% Stitching error region (717, 265) 100%

Appendix D Shape and size classification

The effect of noise reduction using PCA is displayed in Fig. 11 The SNR was 23.5 dB initially
and 22.2 dB after PCA. Compared to the parallel defect, the perpendicular defect has a weaker
scattering signature. The background pattern and the noise overwhelm the perpendicular defect
signal. As a result, the defects were not visible even after 2DIS processing. We used PCA on the
experimental data to improve its SNR from 9.9 dB to 18.2 dB. See Fig. 12.

Fig. 11. Parallel defect non-interferometric image with 2nd order difference (2DI). (a)
Before and (b) after applying PCA.

Fig. 12. Perpendicular defect interferometric image with 2DIS. (a) Before and (b) after
applying PCA. The defect signal is buried in background and noise.

The performance details of the models in Fig. 9 are explained here. For Figs. 9(a)-9(c),
Category 1 models use c = 1.1, Category 2 models use c = 1.2, and Category 3 models use
c = 1.0 on the outcome list. Model 2B can display shape-based similarity for parallel defect
and can classify the 32-nm size. The low precision of 3B indicates that other defects such as
stitching error or nano-scale dust are detected above the 50% threshold. For model 3A, trial
#17 provides ED = 16.518. It is the only defect detected in this trial. This trial corresponds to
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Aj = {26.00, 38.91, 46.22}. This provides evidence of our hypothesis that experimental data has
frame-to-frame variations in the SNR and intensity due to noise and changes to the background.

We now discuss size inference in stitched DPM parallel bridge defect images in Figs. 9(d)-9(f).
Category 1models use c = 1.1, Category 2models use c = 1.1, andCategory 3models use c = 1.2
on the outcome list. For model 2B, trial #15 shows the lowest distance (ED = 13.958) and highest
precision. It detects only the central defect. The intensity pattern is Aj = {46.22, 26.00, 46.22}.
Size inference in stitched DPM perpendicular defect images is displayed in Figs. 9(g)-9(i). Unlike
with the parallel bridge defect, we could not estimate the mean stage translation distance using
the experimental optical images because the tripole pattern was not visible. Thus, we estimated
Dmean = 29 pixels using the model parameters obtained in the learning stage. Category 1 models
use c = 2.1, Category 2 models use c = 2.0, and Category 3 models use c = 2.0 on the outcome
list due to lack of data redundancy. We expect BX67 and BY67 defects to have similar sizes.
For model 3B, trial #5 provided the best results. It detects the central defect with ED = 9.40 ×
10−4 and Aj = {302.5, 318.6, 302.5}. This indicates that similar to our hypothesis, the noisy
experimental data has different intensity variations.
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