
RESEARCH ARTICLE

Disorder strength measured by quantitative

phase imaging as intrinsic cancer marker in

fixed tissue biopsies

Masanori Takabayashi1,2*, Hassaan Majeed3, Andre Kajdacsy-Balla4, Gabriel Popescu2

1 Department of Systems Design and Informatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan,

2 Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and

Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America,

3 Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of

Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 4 Department of Pathology,

University of Illinois at Chicago, Chicago, Illinois, United States of America

* takabayashi@ces.kyutech.ac.jp

Abstract

Tissue refractive index provides important information about morphology at the nanoscale.

Since the malignant transformation involves both intra- and inter-cellular changes in the

refractive index map, the tissue disorder measurement can be used to extract important

diagnosis information. Quantitative phase imaging (QPI) provides a practical means of

extracting this information as it maps the optical path-length difference (OPD) across a tis-

sue sample with sub-wavelength sensitivity. In this work, we employ QPI to compare the tis-

sue disorder strength between benign and malignant breast tissue histology samples. Our

results show that disease progression is marked by a significant increase in the disorder

strength. Since our imaging system can be added as an upgrading module to an existing

microscope, we anticipate that it can be integrated easily in the pathology work flow.

Introduction

Breast cancer is the most commonly diagnosed type of cancer among women worldwide [1].

Furthermore, according to the American Cancer Society, the incidence of breast cancer in the

US is on the rise, with 200,000 new cases expected in the year 2017 [2]. While the burden of

disease is significant, standard breast histopathology still relies on manual microscopic inspec-

tion of Hematoxylin and Eosin (H&E) stained tissue. The H&E primary stain provides the nec-

essary contrast needed for a trained pathologist to distinguish between normal and abnormal

tissue morphology. However, this type of investigation is qualitative, depends on the details of

tissue processing and, as a result, often leads to inter-observer variability. Thus, there is a need

to provide an objective basis for evaluation based on physical metrics. For cases where infor-

mation provided by the H&E stain is limited and diagnosis is difficult, specialized stains can

help pathologists [3]. New quantitative markers can provide objective assessment, as well as

information complementary to traditional biomarkers. Specific information on tumor cell
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biology, extracted by such intrinsic markers, can also potentially lead to automated computer

algorithms.

Quantitative phase imaging (QPI) is a label-free microscopy technique where contrast is

generated by the optical path-length difference (OPD) across a tissue specimen [4–7]. The

phase image ϕ(x, y) extracted in QPI is given by the expression

�ðx; yÞ ¼
2p

l
nðx; yÞLðx; yÞ; ð1Þ

where n(x, y) is the refractive index contrast between the tissue and the surrounding medium

(mounting medium in the case of histology samples), L(x, y) is the tissue thickness and λ
the illumination wavelength [4]. For precise histological sections, the tissue thickness can be

assumed to be relatively constant, L(x, y)� L, meaning that a QPI measurement provides a sig-

nal that is proportional to the refractive index map of tissue. Since it is proportional to the dry

mass content of cells and cellular matrix, the refractive index map informs on tissue density as

well as cell organization within tissue [8, 9]. Since QPI allows extraction of the refractive index

map label-free, the extracted biological markers are intrinsic, meaning that the results are not

susceptible to variation due to differing staining procedures, thus, providing a robust signal for

automated analysis. Tissue refractive index based markers have been used in the past to sepa-

rate benign and malignant prostate tissue [10] as well as for detection of pre-malignancy in

colorectal tissue [11]. OPD maps in general, extracted using QPI, have been used for address-

ing quantitative histopathology problems in prostate, colon, breast, pancreatic and other can-

cers etc. [12–20].

The tissue metric referred to as “disorder strength” was first used for diagnosis by Subrama-

nian et al. [21]. The authors used it as a means of probing the sub-wavelength spatial fluctua-

tions of refractive index and, thus, to detect carcinogenesis undetectable by standard

histopathology [22–31]. Since QPI systems employ interferometric measurements, they are

sensitive to sub-wavelength fluctuations in the refractive index map in both space and time

[4]. Eldridge et al. measured the disorder strength using QPI and demonstrated that a transfor-

mation in cell mechanical properties can be measured by quantifying the cell disorder strength

[32]. They applied this analysis to colon, skin and lung cancer cells to demonstrate an inverse

relationship between sheer stiffness and disorder strength [32]. Furthermore, A. Muñoz et al.
evaluated the shear stiffness of populations of cells during transformation to a carcinogenic

state using a QPI-based method and applied it to identify the development of cancerous cells

[33].

Here, we propose to use the disorder strength as an intrinsic marker for classifying benign

and malignant breast tissue. We imaged a tissue microarray (TMA) comprising of cores

obtained from cancer and normal-control patients. Details of this sample can be found in [13].

Each core was diagnosed as either benign or malignant by a board certified pathologist by

examining H&E stained tissue images of a parallel tissue section. From this TMA, we studied

20 benign cores and 20 malignant cores. Since malignancy causes changes in both tissue archi-

tecture at the nanoscale, we hypothesize that these modifications will be reflected in the disor-

der strength. We demonstrate this by imaging the tissue microarray using a technique called

Spatial Light Interference Microscopy (SLIM), which is a high-sensitivity QPI method, able to

detect sub-nanometer optical pathlength fluctuations [5].

Methods

A schematic of the SLIM setup is shown in Fig 1A. The SLIM module is attached to a commer-

cial phase contrast microscope (PCM). The lamp filament is imaged onto the condenser
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annulus (Köhler illumination conditions) which is located at the front focal plane of the con-

denser lens. The specimen is located at the back focal plane of the condenser lens, and front

focal plane of the objective. The scattered and unscattered lights are relayed by the objective

and tube lenses. As a result, the expanded phase contrast image which has the intensity distri-

bution in accordance with the phase contrast caused by the specimen is observed at the image

plane. However, because the output of PCM is the qualitative phase image, the quantitative

phase map caused by the specimen cannot be directly retrieved from this image. The function

of SLIM module is to convert this qualitative phase image into a quantitative one by properly

phase modulating the incident light with respect to the scattered light. The field at the image

plane is Fourier transformed by the lens L1, such that the unscattered light can be spatially iso-

lated from the scattered light. Since the unscattered light has the ring form, by displaying the

corresponding ring pattern on the reflective liquid crystal phase modulator (LCPM), we insure

that the scattered light remains unaffected. Four phase shifts are applied to the unscattered

light at increments of π/2 rad. as shown in Fig 1B. The corresponding four images captured by

the charge coupled device (CCD) are obtained as shown Fig 1C. Consequently, the quantitative

phase image is retrieved as described in Ref. [5] and Fig 1D.

Fig 2A and 2B show the quantitative phase image and its expanded view of benign and

malignant breast tissue samples, respectively. The samples comprised a tissue microarray

(TMA) of cores constructed from breast tissue biopsies of 400 different patients. Each biopsy

was formalin fixed and paraffin embedded before sectioning it into slices of 4 μm thickness

Fig 1. SLIM system. (A) Schematic setup. (B) The phase rings and (C) their corresponding intensity images captured by CCD. (D) The retrieved quantitative

phase image.

https://doi.org/10.1371/journal.pone.0194320.g001
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each using a microtome. Two parallel, adjacent sections were selected from each biopsy and

one of these sections was stained using H&E, leaving the other one unstained. Cores were then

constructed for both the stained and unstained tissue, and these were mounted on separate

slides after de-paraffinization, using xylene as the mounting medium. The stained samples

were imaged using a bright-field microscope, and their images served as a reference for evalu-

ating diagnosis on the unstained samples using SLIM. The slides were obtained from our col-

laborating pathologist, Dr. Andre Kajdacsy-Balla, at the University of Illinois at Chicago. Each

patient consented to their tissue samples being used as a part of the study and the process of

obtaining consent was approved by the Institute Review Board (IRB Protocol Number 2010–

0519) at University of Illinois at Chicago (UIC). The data analysis was conducted on the sam-

ples at the University of Illinois at Urbana-Champaign (UIUC) after all patient identifiers had

been removed. The procedures used in this study for conducting experiments using human

subjects were also approved by the institute review board at UIUC (IRB Protocol Number

13900).

Fig 2. Quantitative phase images and their enlarged view. (A) Benign and (B) malignant breast tissues.

https://doi.org/10.1371/journal.pone.0194320.g002
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By definition, the disorder strength map, Ld(x, y), is expressed as:

Ldðx; yÞ ¼ Dnðx; yÞ2

 �

wlc; ð2Þ

Here, <. . .>w denotes the average within the window of interest, Δ means the difference

from its average, i.e., Δn(x, y) = n(x, y)—<n(x, y)>w, and lc is the spatial autocorrelation length.

Fig 3A shows the quantitative phase image ϕ(x, y), which contains information about the spa-

tial variation of the refractive index change of tissues as expressed by Eq 1. The local variance

and average of the phase has the form, respectively,

D�ðx; yÞ2

 �

w ¼
2p

l
L

� �2

Dnðx; yÞ2

 �

w ð3aÞ

and

�ðx; yÞh i
2

w¼
2p

l
L

� �2

n2

mean ð3bÞ

Here, nmean is the average of the refractive index in the tissue. Thus, the local refractive

index fluctuation map, which is independent of the thickness, can be computed as [32]

Dnðx; yÞ2

 �

w ¼
D�ðx; yÞ2

 �

w

�ðx; yÞh i
2

w

n2

mean: ð4Þ

Therefore, we can rewrite Eq 2 and obtain the final form to calculate the disorder strength

map from the quantitative phase image as [32]

Ldðx; yÞ ¼
D�ðx; yÞ2

 �

w

�ðx; yÞh i
2

w

n2

meanlc; ð5Þ

In our calculation, we used a window of 5×5 pixels (0.125 μm/pixel). Fig 3B and 3C show

the example of the calculation result of<ϕ(x, y)>w
2 and<Δϕ(x, y)2>w, respectively. Also,

from these two images, we can obtain <Δϕ(x, y)2>w /<ϕ(x, y)>w
2 as shown in Fig 3D. Since

our interest is the fluctuation only in the tissue region, the background pixels were excluded.

In our calculation, the pixels which satisfy <ϕ(x, y)>w < 0.075 rad. are treated as background

pixels. Here, we note that the selected threshold value of 0.075 rad. is about 3 times larger than

the standard deviation of ϕ(x, y) in an arbitrary selected background region. Fig 3E shows

<Δϕ(x, y)2>w /<ϕ(x, y)>w
2 after applying this mask. Furthermore, because the very large

value of<Δϕ(x, y)2>w /<ϕ(x, y)>w
2 are observed in the small area including the edge of the

tissue where the thickness in the area might not be constant, the pixels having the value larger

than 0.21 are filtered out as shown in Fig 3F. Consequently, the disorder strength can be calcu-

lated using the resulting phase image. Fig 3G shows the normalized 2D spatial autocorrelation

function of ϕ(x, y), Γ(x, y). From this, we re-plot the normalized spatial autocorrelation func-

tion in terms of r = (x2 + y2)1/2 as shown in Fig 3H. Then, the spatial autocorrelation length, lc,
is defined as the half width at 1/e of the maximum, i.e., Γ(r = lc) = 1/e.

Results

Fig 4A and 4B shows the disorder strength maps of benign and malignant samples, respec-

tively. It can be seen that the disorder strength in the malignant sample is larger than that in

the benign sample. Also, we can find that the disorder strength obtained in our calculation is

Disorder strength measured by QPI as intrinsic cancer marker in fixed tissue biopsies
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Fig 3. Procedures. (A) Original phase image. (B) Local phase average map. (C) Local phase variance map. (D) Local

phase fluctuation map. (E) Local phase fluctuation map with background reduction mask. (F) Local phase fluctuation

map with edge reduction filter. (G) 2D spatial autocorrelation. (H) 1D spatial autocorrelation.

https://doi.org/10.1371/journal.pone.0194320.g003
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of the order of 1 μm which is higher than that obtained in previous studies [21, 32]. This is

likely caused by the difference in contrast between different techniques and different nature of

the samples. Laser QPI methods are known to produce lower contrast phase images, ϕ(x, y).

As a result, Δϕ(x, y) has much smaller values in this case. Furthermore, using smaller windows

for averaging also results in lower Δϕ(x, y) values. Images obtained by SLIM has higher con-

trast than those obtained by other imaging systems, which result in higher phase variance. In

addition, tissue biopsy cores generally have a complex structures compared with single cells

which were used in the previous works [32, 33]. Fig 5 shows the averaged disorder strength

across the tissue area. The error bar in the figure denotes the standard error in 20 samples

Fig 4. Disorder strength maps. (A) Benign and (B) malignant tissues.

https://doi.org/10.1371/journal.pone.0194320.g004

Fig 5. Disorder strength of benign (N = 20) and malignant (N = 20) tissues.

https://doi.org/10.1371/journal.pone.0194320.g005
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each. The p-value between the benign and malignant samples using two-sided Wilcoxon rank-

sum test was 0.0066. The results indicate that there are statistically significant differences

between these two groups, therefore, the disorder strength can be utilized as a marker for a tis-

sue screening. As demonstrated in [32, 33], measurement of disorder strength can inform on

the mechanical properties of a biological specimen and our results motivate further studies

investigating how tissue mechanics vary with disease progression, with disorder strength used

as a convenient metric.

Summary

In summary, we showed that the disorder strength measured from QPI is a quantitative

marker of malignancy that can be used to classify benign and malignant breast cores. This

marker, based on refractive index fluctuations that are indicative of the disorder strength, is

obtained here from unlabeled tissue samples, meaning that it is not affected by stain variation

across different samples.

Finally, we note that previous publications have shown that, from quantitative phase images

of tissue slices, one can extract the scattering mean free path and anisotropy factor of the bulk

[34, 35]. This result, known as the scattering phase theorem, has led to multiple SLIM studies

of using scattering parameters for diagnosis and prognosis [10, 12–15, 36]. Specifically, the

scattering mean free path, ls relates to the phase variance as ls = L /<Δϕ(x, y)2>w [35]. There-

fore, from Eq 5, we see that, averaging over the same spatial scale, the disorder strength and

scattering mean free path are simply inversely proportional, Ld/ 1 / ls. The physical signifi-

cance of this result is straight forward: higher tissue disorder generates stronger scattering,

which implies shorter ls. It is, thus, not surprising that both parameters have been used success-

fully in cancer pathology, as they both report on tissue inhomogeneity. SLIM provides a

robust, high-throughput approach to imaging histology slides. Recent advances in SLIM data

acquisition allowed us to image an entire microscope slide, containing hundreds of tissue

cores, at 0.5 μm transverse resolution in 45 min, while maintaining the sub-nanometer path-

length sensitivity [16]. Because SLIM can be implemented as an upgrade of the existing micro-

scopes, we anticipate that it can be plugged into the existing pathology work flow and help

solve many problems of clinical importance.

Supporting information

S1 Fig. Quantitative phase images of cores used in this study.

(TIF)

S2 Fig. Disorder strength maps of cores used in this study.

(TIF)

S1 Table. Disorder strength of each core.

(XLSX)
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