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Abstract: New quantitative prognostic markers are needed for improved pancreatic ductal
adenocarcinoma (PDAC) prognosis. Second harmonic generation microscopy has been used to
show that collagen fiber alignment in PDAC is a negative prognostic factor. In this work, a series
of PDAC and normal adjacent tissue (NAT) biopsies were imaged with spatial light interference
microscopy (SLIM). Quantitative analysis performed on the biopsy SLIM images show that
PDAC fiber structures have lower alignment per unit length, narrower width, and are longer than
NAT controls. Importantly, fibrillar collagen in PDAC shows an inverse relationship between
survival data and fiber width and length (p< 0.05).

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Globally, pancreatic cancer is the 12th most common malignancy and the seventh and eighth
cause of cancer-related death in men and women, respectively [1]. Its occurrence is growing
exponentially, and it is projected to be the second most lethal cancer in the US by 2020
[2]. Approximately 85% of pancreatic malignancies are classified as ductal adenocarcinomas.
Pancreatic abnormalities are first confirmed and partially diagnosed through conventional
imaging, such as helical computed tomography (CT) [3], contrast-enhanced ultrasound (US) [4],
and enhanced magnetic resonance imaging (MRI) [5].18F Fluorodeoxyglucose (FDG) positron
emission tomography (PET) has emerged as another method that can detect malignant pancreatic
tumors with high sensitivity and specificity [6]. Endoscopic ultrasound - guided fine-needle
aspiration biopsy is a reliable technique for classifying tissue of suspected PDAC patients [7,8],
though it can produce false negative results [9].

When a suspicious region is indicated by imaging, a tissue biopsy is obtained and prepared for
pathology examination with hematoxylin and eosin (H&E) staining. Diagnosis by a pathologist for
most cancers is typically highly accurate, although sometimes the subjective human investigation
results in inter-observer variability [10]. Prognosis of pancreatic cancer, on the other hand, is
far less definitive, having the weakest record among digestive tract cancers [11]. It remains a
challenge to ascertain the prospects of recovery after PDAC surgery, as well as the degree of a
possible disease regression [12]. After tumoral excisions, more than 75% of PDAC patients have
a survival period of less than 5 years. This poor outcome is due to residual lesions left behind by
surgery or new metastasis sites, which lead to relapse [13–16].
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One of the ongoing deficiencies in PDAC management is the lack of unique detectable qualities
that can predict the likely course of the disease. The ability to evaluate the risk of systemic
recurrence is vital, as it can help exclude the need for aggressive options, such as vascular resection
and reconstruction [17]. PDAC tissue may be readily identified by its pronounced desmoplasia,
which is composed of extracellular matrix (ECM) molecules, pancreatic stellate cells (PSCs), as
well as other substances, such as cytokines, growth factors, and ECM metabolizing enzymes
secreted by the immune system [18]. Recent efforts have demonstrated a strong correlation
between stromal microenvironments and patient outcome [19]. It has been found that the extent
of organization and symmetry in stromal ECM, particularly in the fibrillar collagen region, plays
a critical role in tumor development [20–22]. During cancer progression, the structural integrity
of fibrillar collagen is compromised, which leads to tissue strengthening, mechanical interactions
[23], a change in metabolites [24] and conditions conducive to cell infiltration [20]. It has recently
been shown that PDAC-associated stroma has a markedly aligned configuration, differentiating
it from that in benign pancreatic stroma [25]. Furthermore, it was found that stromal collagen
alignment has significant potential as a quantifiable PDAC biomarker and is linked to patient
survival following surgery [12]. These observations were first made using second-harmonic
generation microscopy (SHGM) [26] which is specific to non-centrosymmetric structures, such
as collagen fibers. SHGM is a valuable research tool, but might offer limited adoption in the
clinic, as it uses bulky and expensive instrumentation and has limited throughput due to raster
scanning. The LC-PolScope, an enhanced form of polarized light microscopy [27], has been
proposed as a suitable alternative to SHGM for quantitatively imaging fibrillar collagen in tissues,
and compared well against SHGM using breast and pancreatic cancer pathology slides [28]. It
was shown that the LC-PolScope, a more economic, and simpler system to SHGM, can be used
successfully for the quantification of collagen fibers in terms of orientation and alignment [28].
Though it is convenient to use imaging modalities that are specifically sensitive to fibrillar

collagen such as SHGM and LC-PolScope, acquiring signal from other tissue features has
advantages. For instance, it is constructive to have a comprehensive representation of a biopsy
core, cell, ducts and matrix included, for label free diagnosis in surgical pathology. We present
that spatial light interference microscopy (SLIM) [29] can be used for this purpose. Recently, it
has been shown that similar collagen information can be extracted using SLIM, which is less
expensive than SHGM and can be as much as a factor of ∼1,000 faster [30]. Specifically, the
collagen fiber orientation in cancerous breast tissue was quantified based on SLIM data [30]. It
was shown that the composition, orientation, and alignment of collagen fibers in tumor-adjacent
stroma affect tumor growth and metastasis. SLIM is not only sensitive to this fiber orientation
but can also detect other components of the tumor biopsy such as tumor cells [31].

In this paper, we use SLIM as a label-free quantitative phase imaging (QPI) technique [29,32],
along with an established fiber quantification software approach [33], to explore how collagen
fiber properties: alignment per length, width, length, and straightness, relate to malignancies and
patient data profiles. Quantitative phase imaging is a method that can measure nanometer scale
pathlength changes in a biological specimen [32]. Recent studies show that QPI has clear potential
for clinical applications [34–37]. SLIM has previously been used toward the effective diagnosis
of breast cancer, which is usually performed through qualitative H&E stained tissue examinations
[31]. In addition to its ease of use, efficiency and conduciveness to fiber analysis, the phase images
produced by SLIM have also been used to extract various tissue properties, such as scattering
length (the average distance between two scattering events) of light scattered by the tissue [38]),
optical anisotropy (the average cosine of the scattering angle, found to be reduced in low prostate
survival cases [39]), and the spatial fluctuations in refractive index, known as disorder strength
[40]. The refractive index of tissue is also accessible in SLIM images, and has previously been
used as a marker for prostate malignancies [39]. Furthermore, SLIM uses broadband illumination
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light that diminishes speckle artifacts and lends itself well to automated segmentation tools that
need both sharp morphological contrast and precise quantitative information [41,42].
In this study, we used our analysis to segment stromal fibers, including collagen, in both

PDAC and NAT cores. In contrast to the previous fiber tracking work on SLIM breast tissue
images, which only evaluated fiber orientation, here we incorporate four fiber properties and
do not require any structural segmentation. Since SLIM is not uniquely sensitive to collagen,
an involved process with filters was previously employed to exclude all signals except for the
isotropic collagen fibers. Here, however, we leverage the greater number of fiber properties
and the drastic morphological dissimilarity in PDAC and NAT cores to dispense with any prior
feature extraction. We found significant differences between the filament properties in the two
groups and a strong correlation between these and patient survival.

2. Methods

2.1. Tissue microarray (TMA)

The patient cohort consisted of 90 tumor cores and 90 normal adjacent tissue, and one marker
core (US Biomax, Inc.,#HPan-Adel180Sure-010). From the PDAC group, 62 cases were ductal
adenocarcinoma, 20 cases were adenocarcinoma, 4 were adenosquamous carcinoma, 3 were
mucinous adenocarcinoma, and 1 was mucinous cystadenoma. Staging levels were I-II, IA, IB,
II, IIA, IIB, and IV. The mean overall survival was 23.7 months (range 0-87 months). Sixty of
the patients were males and thirty were females. The mean age of the patients was 58.3 years
(range 36-83 years).

A board-certified pathologist, who was blinded to clinical grading and all computed data,
performed diagnosis on each core using the H&E brightfield images acquired by Aperio
ImageScope (Leica Biosystems). The pathologist also indicated the presence of cancer cells and
desmoplasia in PDAC histology, as well as healthy acini, veins, ducts, and islets of Langerhans in
normal tissue. TMA cores containing necrotic debris or partially missing tissue were all omitted
from the final analysis.

2.2. Spatial light interference microscopy (SLIM)

The cores were imaged with spatial light interference microscopy (SLIM) with a resolution of
380 nm using a Nikon Plan-APO 40x/0.95 N.A objective (Fig. 1). SLIM is composed of an
inverted phase-contrast microscope with a module attachment at the output (CellVista SLIM Pro,
Phi Optics, Inc.). A liquid crystal spatial modulator (SLM) placed at the back focal plane of a
Fourier lens (Fig. 1) provides additional phase shifts between the scattered and unscattered light,
in increments of π/2. The pattern projected on the SLM matches exactly the phase ring of the
objective pupil. Four intensity images with different phase delays are acquired consecutively,
enabling the computation of a phase map [29]. SLIM thereby generates quantitative phase images
of the sample that, in turn, provides information on its dry mass density at femtogram precision
[43]. All cores were acquired through an automated scan of 1388× 1044-pixel tiles using our
integrated custom SLIM software [44]. The scanning procedure took approximately 20 minutes
to prepare and, subsequently, each core was covered within 3.3. minutes at a rate of 1 frame/s.
The total imaging dimensions amounted to 24× 40.2mm2, and consisted of 24,120 individual
SLIM images, which were stitched to form a mosaic using a python algorithm developed in-house
(Fig. 2(A-D)).

2.3. Fiber tracking

Fibrillar structure analysis was performed on SLIM images using the default settings in the
CT-FIRE software package, as previously described [22,25,41] (Fig. 2(E)). Alignment per length
was calculated according to relative fiber angles in a core, spanning a range of 0.0-1.0 (1.0
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Fig. 1. Schematic for SLIM. The SLIM module is attached to a commercial phase contrast
microscope (Nikon Eclipse Ti).

indicates all fibers are parallel), divided by the length of the traced fiber in microns. Length
and width were generated initially in pixels and then converted to microns according to a scale
calibrated from the 40X Nikon objective. Straightness of fibers was calculated based on tangent
angles at successive points tagged on a segmented line (1.0 denotes all fibers are in the same
direction). To account for intra-tumoral PDAC heterogeneity on the TMA, all fibers from the
cores, amounting to between 4,000 and 5,000 tracking fragments per core, were included in the
analysis. We also incorporated the available patient information (grade, stage, gender, age) as
covariates in our analysis to estimate their potential clinical application.

2.4. Statistical analysis

Statistical analysis was performed in MATLABTM. The histograms were generated using data
retrieved from each fiber. Differences between NAT and PDAC parameters were evaluated using
standard deviations for alignment measurements - to account for differences in overall fiber
alignment per core - and mean values for the other three properties, with p values obtained from
student t-tests. The decision boundary for the principal component analysis (PCA) was obtained
using a linear discriminant analysis (LDA) classifier. Survival curves were constructed according
to the Kaplan-Meier estimation, with differences calculated according to the Log-rank test. Cutoff
values were selected according to the first and last of histogram distributions. The cutoffs for
alignment per length were below 0.9°/µm and after 1.15°/µm, for width 0.4 µm and 0.5 µm, for
straightness 0.919 and 0.928, and for length they were 6.0 µm and 7.9 µm. Similar figures were
applied to NAT computations. The correlation percentages were computed according to the
Pearson’s linear correlation coefficient [45].
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Fig. 2. Stitched SLIM images of the whole TMA slide (Hpan-Ade180Sur-01) (A). SLIM
images of PDAC/NAT biopsy cores (scale bar 50 µm) (B-D). Corresponding CT-Fire mapping
of fibers for D (E).

3. Results

3.1. Relationship between PDAC and NAT fiber tracking properties

Since the TMA used in this study includes two cores per patient, we were able to image and
quantify filamentary details in normal and PDAC regions from the same patient. Upon visual
examination, there were evident discrepancies in morphology between cancerous and NAT cores,
with notably dense desmoplasia present in PDAC tissue cores. To explore how filament structures
relate to malignant characterization, we applied the fiber tracking algorithm on both PDAC and
corresponding NAT cores. Since the SLIM signal from NAT cores is nearly as extensive as
that from PDAC cores (Fig. 2(B)), there were similar amounts of tracking elements in both core
types. The PDAC segments predominantly trace collagen fibers, while those of NAT cores track
collagen in addition to the boundaries of acini, veins, ducts, and islets of Langerhans (Fig. 3).
Our data show that PDAC cores had fibrillar structures with less alignment per length, narrower
width, and greater length and straightness than the corresponding NAT tissue (Fig. 4). In addition
to the four fiber properties being significantly different in PDAC compared to normal tissue,
considerable distributions in all four fiber features were calculated in each core.
In order to enhance the distinguishing information between core types, quantitative data

provided by SLIM was included, along with the four fiber parameters, and dimensionally reduced
using PCA. LDA was thereafter performed to distinguish PDAC from NAT cores (Fig. 5(A)). In
this case, the mean dry mass density was evaluated for each core according to previously detailed
methods using SLIM [43]. A confusion matrix yielded an accuracy of 0.7. Using individual
parameters may be more effective however, as ROC curves constructed for each fibrous property
(Fig. 5(B)) show that straightness and length have the greatest diagnostic value, with AUCs
of 0.83 and 0.82, respectively. There was no significant difference in the four calculated fiber
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Fig. 3. Stitched brightfield H&E images of whole pancreas biopsy cores (Hpan-Ade180Sur-
01). NAT pancreatic core with insets showing zoomed in regions of a duct, acini, a vein,
and Islets of Langerhans (A). Corresponding patient PDAC core, with inset showing the
characteristic dense desmoplastic stroma (B).

Fig. 4. Histograms (log) of both normal adjacent tissue (NAT) and pancreatic ductal
adenocarcinoma (PDAC) fiber angle/length (A), fiber width (B), fiber length (C), and fiber
straightness (D) of individual fibers across all cores.
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properties between PDAC cores of low and high histological grade. Furthermore, there were no
significant correlations found between the other patient characteristics and fiber properties.

Fig. 5. Plot of first two principal components of mean width, straightness, length,
alignment/length fiber parameters, as well as dry mass density for PDAC and NAT cores,
with decision boundary (A). ROC curves for discriminating cancerous tissue based on mean
fiber length, alignment/length, straightness, and width (B).

3.2. Stromal fibers as marker for patient outcome

PDAC patients with high alignment per length of segmented fibers exhibit significantly reduced
survival rates (Fig. 6(A)). Fiber width and length were greater in low survival cases, having
associated survival periods of approximately 40 and 60 months, respectively, compared to 80
months for cases with narrower and shorter fiber profiles (Fig. 6(B) and 6(C)). Our results

Fig. 6. Kaplan-Meier survival curves for pancreatic ductal adenocarcinoma (PDAC),
comparing different grades of fiber alignment/length (A), fiber width (B), fiber length (C),
and fiber straightness (D). Log-Rank χ2 of 50.7 (str), 37.43 (width), 25.7 (al), 50.8 (length).
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Fig. 7. Difference between stage groups 1 A-B and 2 A-B in pancreatic ductal adenocarci-
noma (PDAC) fiber alignment (A), fiber width (B), fiber length (C), and fiber straightness
(D). p-values are 0.36, 0.98, 0.184, 0.31, respectively.

Fig. 8. Kaplan-Meier survival curves for normal adjacent tissue (NAT), comparing different
grades of fiber alignment (A), fiber width (B), fiber length (C), and fiber straightness (D).
Log-Rank χ2 of 38.61 (str), 37.43 (width), 21.9 (al), 44.15 (length).
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indicate that straightness has less predictive value in survival rates (Fig. 6(D)). The width and
length distributions had the greatest standard errors, indicating largest intra-class variability.
Surprisingly, the typical disease predictors in tissue, such as tumor stage and grade, were not
significant in this patient cohort (Fig. 7). This result is likely due to most of our cases being low
stage, mostly IB and IIB.

3.3. Correlation of NAT fiber characteristics with patient data

The NAT tissue of PDAC survival rates did not differ significantly in terms of filament alignment
per length, width, length, and straightness (Fig. 8). In the multivariate assessments of NAT cores,
comprising stage, grade, age, gender data, no significant differences in the patient cohort were
found, which may indicate that NAT cores are not informative of neighboring cancerous tissue.

4. Discussion

The implementation of efficient and sensitive techniques to detect new PDAC markers is vital
for effective treatment of this lethal condition. SLIM generates quantitative phase images that
inform on useful tissue properties and has high-throughput tissue scanning capability. Using a
SLIM-based automated procedure, we show that PDAC cores differ sharply from NAT in terms
of segmented properties, including alignment per length, width, length and straightness, enabling
rapid and automated diagnostic stratifying potential.
This modality holds promise for clinical application without the need for prior structural

processing. SLIM has the advantage over collagen-specific modalities, such as SGHM and
LC-PolScope, of providing more inclusionary quantitative information of the cellular microenvi-
ronment such as cells and matrix that can be used to detect new prognostic markers. Furthermore,
though SLIM is not uniquely sensitive to collagen signals, it holds great promise for diagnostic
evaluations on label-free samples such as in surgical pathology application, since there is
significant discrepancy in morphology between PDAC and NAT cores, which is fully described
in the phase maps. Furthermore, it was found that both larger width and greater length of
PDAC collagen fibers are associated with poor patient prognosis. To further explore the value in
extracted fiber data, we evaluated the clinical relevance of the variables in patient profiles. The
fiber data from NAT cores were evaluated with the same approach. No substantial heterogeneity
was observed among patients for NAT, either in survival rates, or stage, grade, gender and age.

These findings establish novel insight on the ECM based morphological aspects of PDAC
tissue and its relationship with those of normal adjoining regions. This is an especially important
revelation since pancreatic cancer is commonly associated with bleak post-operative prospects.
In summary, we have demonstrated that combining quantitative phase imaging with a fiber

tracking algorithm can assist in diagnostic and prognostic evaluations, which may prove beneficial
in the clinical setting. Before our method becomes adoptable, further investigations on different
tissue samples are needed to consolidate and fine-tune this process. Since SLIM provides a
quantitative map of tissue, it lends itself well to the application of machine learning tools to bypass
and expedite tedious and expensive histological procedures, as well as refine tissue analysis.
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