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ABSTRACT: Primary neuronal cultures have been widely used to study neuronal
morphology, neurophysiology, neurodegenerative processes, and molecular mechanism of
synaptic plasticity underlying learning and memory. However, the unique behavioral
properties of neurons make them challenging to study, with phenotypic differences expressed
as subtle changes in neuronal arborization rather than easy-to-assay features such as cell
count. The need to analyze morphology, growth, and intracellular transport has motivated
the development of increasingly sophisticated microscopes and image analysis techniques.
Due to its high-contrast, high-specificity output, many assays rely on confocal fluorescence
microscopy, genetic methods, or antibody staining techniques. These approaches often limit
the ability to measure quantitatively dynamic activity such as intracellular transport and
growth. In this work, we describe a method for label-free live-cell cell imaging with antibody staining specificity by estimating the
associated fluorescence signals via quantitative phase imaging and deep convolutional neural networks. This computationally inferred
fluorescence image is then used to generate a semantic segmentation map, annotating subcellular compartments of live unlabeled
neural cultures. These synthetic fluorescence maps were further applied to study the time-lapse development of hippocampal
neurons, highlighting the relationships between the cellular dry mass production and the dynamic transport activity within the
nucleus and neurites. Our implementation provides a high-throughput strategy to analyze neural network arborization dynamically,
with high specificity and without the typical phototoxicity and photobleaching limitations associated with fluorescent markers.

KEYWORDS: microscopy, quantitative phase imaging, neuronal cell culture, artificial intelligence, fluorescence microscopy,
high-content screening, PICS, label-free imaging

Neuronal branching and arborization provide a phenotypic
marker for cellular viability and neurogenerative

diseases.1−4 While phase contrast microscopy can be used
for studying neuronal cultures,5 the resulting images often
struggle to differentiate between neurons and glia6 and offer
little beyond qualitative morphological information. Due to the
need for chemical specificity, fluorescence-based techniques
have become the main tools in neuroscience.7 For example,
confocal microscopy used in combination with immunostain-
ing can reliably study axonal growth and dendritic branching.8

When cells are fixed, dynamic information is painstakingly
extracted by recording images from different subpopulations at
different times. These challenges motivated the use of
fluorescence proteins,9 which in turn introduces restrictions,
such as phototoxicity10 and throughput,11 with the transfection
process often hampering experiments with limited time-
frames.12

Quantitative phase imaging (QPI),13−15 which derives
morphology information from the scattered light by unlabeled
specimens, offers a nondestructive method for studying cellular
dynamics. This is accomplished by using interferometry to
extract intrinsic information about the scattering potential
associated with the object. As the scattering potential is

invariant to the imaging system, it can be used to measure
physical parameters such as the dry mass content of the
cell.16−19 In a broader context, QPI techniques promise to
improve the image sensitivity to nostructures,20 facilitate 3D
imaging,21−23 and reduce observational bias due to staining24

and fluorescent labels.25−29 Although the quantitative phase
measurement adds new information to the transmitted light
signal, it nevertheless lacks molecular specificity. However,
recent progress in artificial intelligence offers a potential
solution. With the advent of artificial intelligence techniques
based on deep convolutional neural networks,30 a new image-
to-image translation31,32 strategy has emerged where artificial
stains can be inferred from the quantitative phase image
itself.33 Exploiting the high sensitivity to structure and
quantitative information, phase imaging with computational
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specificity (PICS) was used to characterize the dry mass
growth rate of subcellular compartments.34

The intersection of quantitative phase imaging and artificial
intelligence is not without precedent. The newfound ability for
AI to annotate images has been used for diverse applications
such as identifying cellular nuclei28 and predicting fertility
outcomes associated with sperm cell morphology.35 In a more
unconventional direction, AI has been shown to provide an
avenue for estimating data that fall outside the imaging
instrument’s traditional sensitivity, such as imputing data inside
the missing cone36 or even estimating polarization states.37

These efforts show that AI techniques facilitate disambiguating
physical phenomena that are challenging to describe under
classical, non-data-driven formulations. In more modest terms,
AI has been used to improve API imaging instrumentation, for
example, by providing an autofocusing system38 or removing
″coherent″ artifacts associated with fringe-based interferom-
eters.39,40

In this work, we show that PICS can be used to measure the
arborization process in unlabeled neural cultures, over multiple
days, nondestructively (Figure 1). Our method consists of
highly sensitive QPI as well as end-to-end image analysis to
infer the fluorescence intensity for Tau and MAP2,41

commonly used to identify axons and dendrites. These
PICS-derived fluorescence images are then used to label the
neuronal compartments with subcellular specificity. To capture
subcellular growth and intracellular transport, we apply the
PICS-derived semantic segmentation maps to the dry mass
density images rendered by QPI. We validated our assay by

performing a high-content screening of early-stage hippo-
campal cultures and observed several remarkable relationships
between dry mass transport and growth in neurons.

■ RESULTS
PICS Workflow for Semantic Segmentation. PICS

combines highly sensitive, temporally stable QPI with deep
learning to estimate fluorescence stains from unlabeled
specimens. (Figure 1). The inferred fluorescence signal is
processed to generate semantic segmentation maps, which are
then used to analyze the transport and growth of the cellular
dry mass. To acquire the quantitative phase images, we use
gradient light interference microscopy (GLIM), which
measures the optical path length shifts associated with the
specimen in a differential interference contrast (DIC)
geometry. In short, GLIM was used in this study to measure
quantitative parameters, improving the image quality in DIC
while maintaining the fluorescence signal.42 Furthermore, the
GLIM module43 is a relatively straightforward modification to
the conventional DIC microscope (Supplementary Note 1).
Following the procedure in Figure 2 (see Supplementary

Note 1 for details), we acquire four intensity frames
corresponding to π/2 offsets between the two laterally shifted
beams in DIC. The interference between these two beams
reveals the derivative of the phase map along the direction of
the shift. The QPI map is obtained by integrating this
derivative using a Hilbert transform (Supplementary Figure
1c). To identify axons and dendrites, we performed antibody
staining for the Tau and MAP2 proteins, respectively.44 As the

Figure 1. Phase imaging with computational specificity (PICS) for measuring growth and transport during neural arborization. (a) The GLIM
system upgrades a conventional differential interference contrast microscope with quantitative phase imaging capabilities. (b) Hippocampal cultures
were imaged over 41 h for time-lapse analysis (20×/0.8). After the recording, neurons were fixed and stained with antibodies for Tau and MAP2 to
obtain colocalized phase and fluorescence images. An additional nucleus (DAPI-like) channel is provided by manual annotation. To recover time-
lapse data with specificity to antibodies, deep convolutional neural networks trained on the fixed cells were used to infer the fluorescence signals on
live cells. (c) PICS (inferred fluorescence) maps for Tau, MAP2, and nuclei created a three-channel semantic segmentation map, labeling the image
as ″background″, ″nucleus″, and ″neurite″. The segmentation map is then used to characterize the neural growth rates and intracellular mass
transport.
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detection light paths in transmission and epi-fluorescence are
shared, it is straightforward to acquire colocalized fluorescence
images using the same camera detector. Furthermore, we
included a PICS DAPI label by manually annotating the nuclei
in the phase images. Here, we preferred manual annotation to
avoid an extra fluorescence channel and potentially photo-
bleach the sensitive antibody stains.
These colocalized fluorescence images are used to train

neural networks that estimate the fluorescence image from the
transmitted light GLIM image. We note that, while the four
frames that constitute the GLIM image took approximately
200 ms to acquire, each fluorescence channel was acquired by
averaging a total of 10 images at 700 ms exposure each, with 2
× 2 binning. Thus, we found that fluorescence microscopy was
70× slower than phase imaging. While antibody staining is
often faint and depends on protein expression, the signal in
transmitted light imaging can be modulated by simply
increasing the strength of the illumination (with no risk of
photobleaching). These results highlight an important
throughput advantage of synthetic rather than physical
staining.
Next, we use the neural networks trained on fixed, antibody-

stained cells to perform inference on the unstained live
neurons. As shown in Figure 2c, the estimated fluorescence
signal is converted into a semantic segmentation map through
a series of image processing steps. For each estimated
fluorescence image, we perform a spatial bandpass20 to remove
low frequencies and generate a series of variants of the image
using a Gabor filter bank.45 The resulting set of images

highlights the textural information and contains many values at
each pixel. The parameters are reduced to a single channel by
principal component analysis (PCA),46 with a global threshold
applied to binarize the image. Compared to simpler global
thresholding approaches that rely on histogram analysis, Gabor
filters capture textural information, which allows for a more
accurate segmentation.
This procedure is repeated to generate a binary map for each

channel (Tau and MAP2). To merge the channels into a three-
category semantic segmentation map (″nucleus″, ″neurite″,
and ″background″), we take the nuclear binary map, add the
Tau and MAP2 binary images, and assign the ″background″
label to the rest of the pixels. We merged the Tau and MAP2
channels to increase the signal-to-noise ratio and study the
growth and dynamics of both axons and dendrites. As shown in
Supplementary Note 3 and Supplementary Table 1, we find
good agreement between the semantic maps generated from
the estimated and actual fluorescence signals.
Finally, we perform instance segmentation to count the

nuclei by simple connected component analysis (CCA)47 on
the binary nucleus-associated labels. We validated our cell
counting technique by comparing manual to automatic nuclear
counts at the first time point. We obtained a Pearson
correlation coefficient of 0.94 between the two techniques,
with the principal disagreement stemming from cell clusters
and glia cells. The manual cell count took roughly 3 h to
perform, while the CCA-based method was completed in
under a minute.

Figure 2. Workflow for automatically annotating GLIM images. (a) Colocalized GLIM and FL images were digitally registered. The phase data
were reconstructed using a Hilbert transform integration technique. Nuclei were manually annotated in ImageJ to simulate DAPI staining. A deep
convolutional neural network was trained using measured data to reproduce the fluorescence channels (Tau/MAP2/DAPI) from the label-free
GLIM image. To analyze dry mass growth rates, we performed inference on the unstained time-lapse sequence. The estimated fluorescence is
converted into a semantic segmentation map with labels for neurite, nucleus, and background. Finally, connected component analysis on the
nucleus-associated regions is used to produce instance segmentation to count the number of nuclei in each field of view. (b) Images are trained
using a U-Net architecture consisting of 64 filters at the first layer, and a Pearson correlation between the actual and estimated fluorescence is used
as the loss function. (c) Estimated fluorescence maps are processed to obtain a binary map by applying a spatial bandpass, generating textures using
a Gabor filter bank, and reducing the dimensionality with principal component analysis. Finally, a threshold is applied to binarize the image for each
channel. These three channels are then merged to form an annotated image with labels for the neurite, nucleus, and background.
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Neural Network Architecture. Central to our approach is
the estimation of fluorescence images from the unlabeled phase
maps.34 To accomplish this, we performed image-to-image
translation using a deep convolutional neural network.31 Deep
convolutional neural networks are well suited to this task as
they combine the texture-based techniques with added
nonlinearities hidden in their deep layers. We used the U-
Net architecture, which includes downsampling and upsam-
pling paths to efficiently integrate both textural and contextual
information.48

To arrive at the final architecture used to estimate our
fluorescent tags, we tuned the number of filter banks and
trained the network with an unconventional loss function. The
results of these experiments are summarized in Figure 3. We
selected the architecture in ref 34 as it is known to have a near
real-time inference performance on commodity computing
hardware, with a filter bank of 16 filter elements at the input
layer (Figure 3, ″U-Net 16″). All networks were trained against
an L1 reconstruction loss function.49 While able to reproduce
much of the morphology of the MAP2 signal (ρ = 0.91), the
network was poor at capturing variations of protein within
cells, often being unable to reject the MAP2 signal within the
nucleus (Figure 3, green arrows). To bias the training
procedure but maintain the same inference time, we
introduced a generative adversarial network (GAN)50 training
scheme where the U-Net is taken as a generator, and PatchGan
was used as a discriminator.31 Although performance improved

as evidenced by a reduction in the overstaining of the top
neuron and an improved correlation coefficient (Figure 3,
green arrow, ρ = 0.93), the nucleus within the top neuron
appeared to be distorted. Attributing these defects to the
tendency of GANs to introduce features where none exist,51

we instead removed the GAN and expanded the initial filter
bank size to 64 elements (U-Net 64). With more filters, this
scheme is more successful in capturing subtle details, and the
nuclear vs non-nuclear area is clearly delimited in the top
neuron (Figure 3, green arrow). Finally, we modified the loss
function to use the Pearson correlation between the actual and
estimated fluorescence image, which is our ultimate quality
metric.52 The resulting network was able to delineate cellular
morphology and discriminate between cell bodies and cell-
shaped debris (Figure 3, orange arrow). Qualitatively, the
estimated fluorescence signal shows a strong resemblance to
the actual fluorescence signal (Figure 3b). Unlike the real stain,
the estimated fluorescence signal avoids autofluorescence and
other unwanted sources of noise, especially in the background
(Figure 3b, Tau).

Time-Lapse Antibody Staining Prediction. Among the
chief advantages of the proposed method is the ability to
perform live-cell imaging with the specificity of computation-
ally inferred stains that would otherwise require fixation. This
is especially true of antibody-based staining techniques, which
require the cell to be cross-linked and made permeable, a
procedure that is incompatible with live-cell imaging.41 To

Figure 3. Deep convolutional neural network training. (a) To investigate the effect of neural network architecture loss functions on image quality,
we measured the Pearson correlation between the actual and estimated fluorescence images. As a baseline for performance, we took a U-Net
constructed with a reduced parameter set consisting of 16 initial filter elements trained against an L1 loss function. Compared with the
conventional U-Net training scheme, we found that a GAN improved performance by suppressing the overestimation of MAP2 concentration in
the nucleus (green arrows). Further improvements came from expanding the number of filters in the U-Net architecture, with the GAN removed
for faster training time (U-Net 64). Switching the loss function to the Pearson correlation further improved performance with the resulting images
suppressing artifacts, such as unwanted debris around the nuclei (U-Net 64, Pearson, orange arrow). (b) Actual vs estimated fluorescence images
showed strong agreement, with only a slight mismatch in long axons (20×/0.8).
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overcome this challenge, we performed time-lapse GLIM
imaging over a few days and stained the cells at the end of the
experiment for neural network training. The characterization of
primary hippocampal neuronal arborization has been recog-
nized as valuable for applications including drug discovery and
toxicity screening53,54 (Figure 4).
We imaged early-stage hippocampal neurons consisting of

three 5 × 5 mm2 regions under a 20×/0.8 objective in a
multiwell plate that is typically used to image several
preparations in parallel (Figure 4). Each well was imaged by
GLIM in roughly half a minute (see Supplementary Figure 2
for details). As per our protocol outlined in Figure 1b, at the
end of the experiment, the cells were fixed, immunostained,
and imaged by both GLIM and fluorescence microscopy. Next,
we trained the neural networks to perform a remapping from
the GLIM image to the colocalized fluorescence images, which
are then processed into a semantic segmentation map (Figure
2 and Supplementary Figure 3). Importantly, with an efficient
GLIM light budget, we can trade exposure time for reduced
light intensity and reduced toxicity,10 which is especially
important for imaging highly sensitive cells such as neurons.55

We observed that dendrites show steadier growth when
compared to axons, which appear to actively search for
connections. We also witnessed that, when a cluster is
approached by an axon, it will rapidly divert its dendrite to
form a connection56 (Figure 4, hour 33 to 41, green arrow).
These behaviors, as well as others, are shown in Supplementary
Movies 1−3.
Mass Transport Analysis. Cells often express dynamic

phenotypes that are related to changes in the transport of
cellular cargo. To analyze the transport of the cellular mass, we
employed dispersion-relation phase spectroscopy (DPS),

which reports on the transport rate of the dry mass at different
spatial scales.57 Our analysis method is discussed in
Supplementary Note 4 with a pictorial representation of the
processing steps shown in Supplementary Figure 4.
In DPS, cellular material is understood to be governed by

the diffusion−advection equation so that it is possible to
measure the spread in advection velocities associated with
active cellular transport. DPS has been previously applied to
measuring transport in live cells.24,58 However, here we used
DPS in combination with PICS segmentation, which allows for
studying dynamic transport in subcellular compartments.
Using the high-throughput AI-based segmentation, we
measured the transport associated with 300 fields of view or
4679 neurons.
As shown in Figure 5, we measured cellular dynamics at

three spatial scales, with small scales (λS = [1.1,2.1] μm)
corresponding to the size of dendritic spines and nucleoli,
medium scales (λM = [2.1,4.2] μm) approximately at the width
of the extensions, and large scales (λL = [4.2500]) on the order
of the cell size. Following the DPS procedure outlined in
Supplementary Figure 4, we estimated the variance of the
temporal power spectrum at each Fourier frequency in the
image sequence. This procedure estimates the activity at each
spatial mode (Fourier frequency), with a linear curve fit taken
at three relevant spatial frequencies (Supplementary Figure 4).
We performed this analysis for the mass that falls within the
neurite and nucleus by setting to zero the dry mass values that
lie outside the categories. In this work, we looked at transport
at relatively long temporal scales, meaning that fast-moving
diffusive particles are unlikely to be captured between imaging
intervals. Thus, we found that most fields of view were
dominated by advection, i.e., temporal bandwidth, Γ, linear in

Figure 4. PICS provides antibody specificity to unlabeled live cells. (a) Forty-one hours of time-lapse mosaic imaging was performed on a six-well
plate, with three mosaics scans (10 × 10 images, 5 × 5 mm2) acquired at each time point. The plate was digitized in under 2 min. (b) Zoomed-in
portion of a representative region (orange box) shows increasing arborization as the neurons connect (20×/0.8).
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the spatial mode q (Γ ∝ q), and the few sequences that did not
meet this model were excluded from our analysis.
Our results for dry-mass transport analysis are summarized

in Figure 5f. As a plate read was performed every 48 min, we
primarily captured the slow movement consistent with
anterograde transport associated with cytoskeletal proteins.59

We observed that at a ″large″ size scale (λL) associated with
cellular morphology, the nucleus-associated mass transport
exhibits a 37% higher spread in advective mass transport.
Although the spread in mass transport decreases by roughly a
factor of 2 in absolute terms, the nucleus-associated mass has a
44% larger spread at scales corresponding to the width of the
neuronal extensions (″medium″ λM). These results hint that
despite making up a small fraction of the total mass of the
neuronal arbor (roughly 1/4), at scales comparable to cellular
morphology and extensions, the nucleus exhibits a remarkable
diversity of mass transport activity. This result is in contrast to
that for neurites, which are relatively steady in their growth.
However, at smaller scales (λS), this relationship becomes
reversed with nucleus-associated mass transport showing a
29% smaller spread in velocity coefficients. This is not
surprising as smaller scales include neuronal cargo and rapidly
moving dendritic spines. All differences were found to be
statically significant (Mann−Whitney U, p-value < 0.05).
Next, we propose to use PICS to measure the transport of

the antibody-associated protein rather than the cellular dry
mass. The method that extends the transport analysis to
fluorescence data is referred to as dispersion-relation

fluorescence spectroscopy.60 However, with PICS, we can
study the transport of specific molecular structures without
labeling. We selected Tau, as abnormalities in its localization
are associated with many cellular pathologies.61 To calculate
these parameters, we substituted the estimated fluorescence
signal for the dry mass and computed the DPS advection
coefficients associated with the whole field of view. We stress
that this type of observation is performed here for the first
time, as antibody staining requires destructively fixing the cell.
The distribution of transport coefficients is shown in Figure 5e.
We note that the DPS transport activity for the Tau protein
inferred by PICS is somewhere between the neurite and
nucleus activity for size scales corresponding to cellular
morphology (λL) and extensions (λM). Further, the estimated
Tau transport is comparably lower for size scales correspond-
ing to dendritic spines (λS), which are known to contain less
Tau protein when healthy.62

Dry Mass Analysis. The PICS approach differentiates itself
from the previous efforts on synthetic staining32 by taking a
step further and analyzing the cellular dry mass, a measurement
that is specific to quantitative phase imaging.14 We used the
Tau/MAP2 semantic segmentation to distinguish the dry mass
associated with the nucleus from that of the neurites.
In Figure 6a,b, we measure the normalized rate of change of

the dry mass within each of the 300 mosaic tiles (Figure 4a).
The results indicate that the neurite mass shows a steady
increase, while the growth associated with the nucleus is very
low on average, with a high variance in time. To investigate this

Figure 5. Transport analysis shows substantial nuclear reconfiguration during neuronal arborization. (a) We applied DPS at three spatial scales
corresponding to dendritic spines (λSmall = [1.1,2.1] μm), neurites (λMedium = [2.1,4.2] μm), and cellular morphology (λLarge = [4.2,500] μm). (b−d)
By using the semantic segmentation maps generated from PICS, we collected the advection velocity spread corresponding to transport within the
neurite and nucleus. Boxplots consist of all fields of view that were found to exhibit active transport, and all differences between categories were
statically significant (Mann−Whitney U, p-value < 0.05). (e) Transport analysis was run directly on the inferred fluorescence channel. (f) Summary
of the dry mass advection spread distributions.
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variability, we looked at the relationship between the average
nuclear mass and neurite mass. We calculated the ratio
between the per-tile nuclear-associated mass and the nuclear
count to obtain the average nucleus mass within the field of
view. We noticed an interesting linear relationship between the
average nuclear mass and the average neurite mass (Figure 6c),
with the average neurite mass being roughly four times the
mass of the nucleus (ρ = 0.4). Additionally, we observed the
expected relationship between neurite growth rates and cellular
confluence, which shows that neurites exhibit growth
inhibition as their density increases (Figure 6d). For this
calculation, the cellular confluence was measured on a per-tile
basis at the start of the experiment, and the growth rate was
determined by a linear fit.
Finally, we combined the semantic segmentation maps

generated by PICS with advection coefficients and growth
rates to highlight the interplay between nuclear mass and
transport. For each tile, we obtained a coefficient for large-scale
transport (λL) following the procedure in the previous section.
In total, we correlated 15,000 points from all the acquired data.
In Figure 6e, we observe a direct relationship between nuclear

mass and transport in neurites (ρ = 0.4). In contrast, rates of
nuclear mass change (growth) were found to be anti-correlated
with transport (ρ = −0.4). These findings suggest that a more
massive nucleus promotes fast traffic in the neurite. At the
same time, the transport is slowed down when the neurites
grow.

■ METHODS
Dry Mass Calculation from Phase Images. QPI is governed by

a scattering potential that describes how the incident wavefront is
distorted by the object. Through a series of pioneering experiments
measuring different solutions of proteins and lipids, it was found that
dry mass concentration and scattering potential are linearly related.63

As the scattering potential occurs due to the refractive index
difference from the surrounding medium, QPI yields the nonaqueous
(″dry″) content of the cell.

In conventional microscopes such as DIC or phase contrast, the
relationship between the object’s scattering potential and the recorded
image is not linear.26 In this case, the recorded image depends on the
illumination as well as light propagating from out-of-focus planes.20,26

QPI yields phase maps that are not corrupted by the two amplitudes

Figure 6. Dry mass analysis for subcellular compartments reveals relationships between growth rates and transport. (a, b) Semantic segmentation
maps track the dry mass of nuclei and neurites for 41 h over 300 fields of view, corresponding to approximately 4000 neurons. Dry mass was
segregated into nucleus and neurite components by summing the phase values in the GLIM image within the label specified by the PICS map. To
extract the relative mass change, these values were normalized by the average dry mass during the first 5 h. While the neurite dry mass shows steady
growth, the behavior of the nucleus is more erratic, with no significant growth overall. (c) Neurite mass appears to depend on average nuclear mass
(ρ = 0.4), with a nuclear count obtained from binary morphological operations at the start of the experiment. (d) Neurite growth rate is negatively
related to the cellular confluency (ρ = −0.5). Here, we compute the confluency on a per-tile basis by looking at the fraction of the tile occupied by
cellular material. (e) Neurite transport behavior for λL depends on the total nuclear mass (ρ = 0.5). (f) Neurite growth rate appears to be anti-
correlated with advection spread (ρ = −0.4).
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of the interfering fields. Thus, the phase image within a given optical
section provides access to the dry mass density, σ,

r r( )
2

( )σ λ
πα

ϕ=
(1.1)

where λ is the wavelength of light, αis the refractive index increment,
and ϕ(r) is the quantitative phase image after integration, r = (x, y).
For correlative analysis, we estimate the rate of dry mass growth by

using Savitsky−Golay-based filtering.64 Time points lying at the
peripheries of the sequence are omitted from analysis.
Neural Network Training.We trained three separate networks to

predict Tau, MAP2, and DAPI stains. We used U-Net for the main
architecture, as discussed in the ″Results″ section. The networks for
Tau and MAP2 are trained with the colocalized phase and
fluorescence image pairs. The outputs of these networks are predicted
fluorescence images and are processed into the final semantic
segmentation maps, as outlined in the ″Methods″ section. The
model losses for these networks were calculated as the weighted sum
of the mean absolute error and the Pearson correlation between the
predicted fluorescence intensities and the ground truth fluorescence
intensities.52 Following a standard procedure, pixel values in the
image pairs are normalized between 0 and 1, and images are translated
by several pixels to account for shifts due to slight misalignments
between fluorescent filter cubes.34

The training, validation, and test split are summarized in Table 1.
Initial data were acquired at 20×/0.8 corresponding to ∼600 × 600

μm2
fields of view. One of the challenges with neural networks is

training time, and here we ameliorated these concerns by down-
sampling the images by a factor of 2 using nearest neighbor
resampling. This procedure is also performed to match the GLIM
image to the fluorescence image, which was acquired by 2 × 2
binning. Next, tiles were divided into quarters. Thus, for estimating
the Tau and MAP2 signal, we used 972 phase−fluorescence pairs each
corresponding to an area of ∼315 × 315 μm2, with additional
augmentation (rotation and flipping) performed on the fly during
training.
The network for the DAPI-like nuclear annotation was trained to

produce binary labels rather than estimated fluorescence intensities,
and the training was performed on a slightly different quantity of
images (Table 1). We found that the nuclear annotation required less
computation and thus motivated less augmentation and training time.
A commercial workstation running Gentoo65 was equipped with

two NVIDIA RTX 2070 GPUs, and the networks were implemented
using Keras66 built on TensorFlow.67 We used an ADAM optimizer68

with a batch size of one on each GPU, effectively allowing the
network to use larger training sizes within a single GPU. Training
took 100 epochs and finished in 14 h.

■ SUMMARY AND DISCUSSION
By combining advanced microscopy with artificial intelligence,
PICS allowed us to observe several competing trends during
neuronal arborization. We found that for the hippocampal
neurons studied in this work, there is a correlation between the
average mass of a nucleus and neurites in the same neuron at a
preferred dry mass ratio between the two (Figure 6c, roughly a
factor of 4). While it was hypothesized that neurons have
intrinsic growth potentials in terms of the cellular dry mass,69

this observation provides direct evidence that, during early
network development, the mass within the nucleus balances
the mass within the neurite. This hypothesis is further

supported by the interplay of intracellular cellular transport
and neurite growth. By limiting our imaging to slow time
scales, we focused primarily on anteretrograde transport
motion.70 In Figure 6e, we observe that the dry mass
associated with the nuclear mass is directly related to transport
activity, with more nuclear mass leading to more active
transport in the axons and dendrites. This is not surprising as
more massive nuclei are expected to produce more cellular
material. Our results highlight that mass transport and growth,
two potentially independent phenomena, are anti-correlated in
the neurites, where high growth rates appear to be
accompanied by slower transport. This observation is in line
with the understanding that there exists a metabolic trade-off
between cellular motion and vegetative growth.70−73

The complexity of imaging neuronal clusters is primarily due
to the photochemical sensitivity of the cells and the resolving
power needed to detect fine structures such as dendrites within
a developing arbor. To meet these challenges, our approach
relies on machine learning, quantitative phase imaging, and
transport analysis with few conventional analogs. At the core of
our analysis scheme is the use of inferred fluorescence images,
which introduce specificity for subcellular compartments
through a digital staining procedure (PICS).34 We found
that inferring antibody stains requires much more computa-
tional complexity compared to simpler markers, such as DAPI.
This motivated us to expand the deep-convolutional neuronal
network and modify the loss function. Further, we found that
the intrinsic variation of protein concentration associated with
the MAP2/Tau antibodies made it difficult to generate a
semantic segmentation map from the estimated fluorescence
signal. This challenge was addressed by using texture-based
thresholding to include local image features. Therefore, our
approach benefited from splitting the fluorescent estimation
and mask generation steps, where the fluorescent estimation
could be trained on an unambiguous ground-truth fluorescence
image. Further, this approach lets us use the same neural
network to impute the signal associated with Tau concen-
tration (Figure 5f).
In a larger context, in contrast to conventional tracking-

based approaches for analyzing neuronal extensions (such as
Sholl analysis74), to improve imaging throughput, we used a
continuous model to describe mass transport, which is
invariant to annotation errors.
With a plate read performed within a few minutes, PICS

enabled us to use label-free microscopes, which are much faster
than their fluorescent counterparts. We found that it was
roughly 70 times faster to computationally estimate rather than
acquire the fluorescence signal. Using the quantitative dry mass
output from QPI and the specificity from AI, we were able to
compute correlations between neuronal growth rates and
intracellular transport, at unprecedented throughput, across
thousands of cells.
While in this work we primarily investigated the relationship

between nuclei and neurites, we expect that the extension of
our mass growth and transport analysis to other stains such as
those associated with the specific species of cargo or other
cellular systems will be relatively straightforward. Ultimately,
by using an interferometric module attached to a conventional
DIC microscope and non-confocal epi-fluorescence imaging,
we hope that PICS will be broadly adapted as an upgrade to
existing microscopes.

Table 1. Dataset Size

stains training validation test total augmentation

Tau/MAP2 784 88 100 972 ×4
DAPI 640 80 80 800 ×2
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