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Inverse scattering solutions using low-coherence light
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We present a new wave-vector-space approach for solving inverse scattering problems. In our formulation, the
theories for diffraction tomography and coherence gating are combined to explain 3D reconstruction with low-
coherence light. Specifically, we apply this method to solve the scattering problem with broadband fields for trans-
mission and reflection measurements. Our results can be applied to any interferometric measurements with
low-coherence light, including optical coherence tomography, angle-resolved low-coherence interferometry, and
white-light diffraction tomography. © 2014 Optical Society of America
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X-ray diffraction emerged in the early twentieth century
as amethod to infer the 3D structure of crystals [1]. Much
of our current knowledge of crystals and protein struc-
tures is the result of solving the inverse scattering prob-
lem using x rays as the interrogating radiation [2,3]. It is
known that, in x-ray experiments, one only has access to
the intensity of the field. The missing phase information
associated with the scattered field can lead to nonunique
solutions in the reconstructed sample structure (see, for
example, p. 304 in [4]). This obstacle is known in the
x-ray community as “the phase problem.”

In the optical regime, on the other hand, recording the
phase information is quite practical, as Gabor first dem-
onstrated in 1948 [5]. In 1969, Wolf reported a theoretical
method for reconstructing the 3D structure of transpar-
ent objects from holographic measurements [6]. Such
reconstruction, referred to as optical diffraction tomog-
raphy (ODT), based on the first-order Born approxima-
tion, is most useful in biology, as unlabeled live cells
are typically transparent to visible light [7-11]. Yet, 45
years after Wolf’s paper, there is no commercial instru-
ment that can provide 3D imaging of unlabeled live cells.

OCT, which is essentially spatially resolved low-
coherence interferometry (LCI), was first demonstrated
in 1991 as a label-free 3D imaging method for deep-tissue
imaging [12]. OCT is an amplitude technique, which uses
the narrow temporal cross-correlation function between
the sample and reference fields to achieve axial section-
ing, even with close to zero numerical aperture (NA)
optics. Izatt et al. used the time derivatives of the phase
(frequency shifts) to generate Doppler imaging [13]. The
combination of OCT and ODT was not demonstrated un-
til much later [14-16]. Ralston et al. showed that using the
phase information in OCT measurements allows for solv-
ing the scattering inverse problem, which, in turn, can be
used for reconstructing the 3D distribution of the tissue
scattering potential with spatially invariant resolution
[15,16]. Villiger and Lasser presented image formation
in OCT using a coherent transfer function approach [17].

Very recently, ODT was implemented with white-light
illumination in high NA imaging. This approach, called
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white-light diffraction tomography (WDT), shares the
coherence gating principle of OCT, while measuring the
signal in transmission [18]. WDT can be realized in any
quantitative phase imaging (QPI) system [19-22]. Unlike
OCT, the numerical aperture of the objective is crucial in
achieving sectioning in WDT. With this method, 3D imag-
ing of unlabeled live cells with submicrometer resolution
in all three directions has been demonstrated. Further-
more, WDT presents an efficient and accurate way of
solving the wave equation in the wave-vector space,
rather than using the traditional Green’s function ap-
proach. In this Letter, we apply this wave-vector-space
method for solving inverse scattering under the Fresnel
approximation in the time and Fourier domains. This in-
verse scattering solution can then be used for 3D
reconstruction from OCT and LCI measurements, which
typically deploy low NA systems suitable for the Fresnel
approximation. Furthermore, the solution is physically
interpreted on the Ewald sphere. We also provide analyti-
cal solutions for the time-domain reconstructions, which
can be used for 3D imaging by scanning the optical path-
length delay between the reference and sample fields.

Figure 1 shows a schematic of the scattering problem.
A plane wave U, is incident on a transparent object, de-
scribed by the scattering potential, y, which perturbs U;,.
The perturbations are carried by the scattering field Uy,
both in the forward and backward scattering semi-space,
represented by U, and U,, respectively. By interfering
the scattered field with a reference field, we can measure
the interference signal, which contains the phase infor-
mation and, thus, the object’s structure.
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Fig. 1. Schematic of the scattering problem.
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We start the mathematical formulation with the
Helmholtz equation, describing the total field distribution
in space and frequency:

V2U(r, w) + n?(r)f3(o)U(r, ®) = 0, €))

where fy(w) = w/c is the wavenumber or the propaga-
tion constant in vacuum. The total field U(r, w) can be
written as a sum, U(r,w) = U;(r, ) + U (r, w), where
U,;(r, w) is the incident field, and U, (r, ®) is the scattered
field. Since the incident field U;(r, w) satisfies the homo-
geneous wave equation, Eq. (1) can be reduced to
VEU(r, 0) + P (0)Us(r, 0) = @)y (0)U(r,0), (2)
where f(w) = nfy(w) is the wavenumber in the medium,
7 = (n(r)) is the spatially averaged refractive index, and
y(r,w) = n?(r,w) — 7?(w) is the scattering potential, the
quantity of interest in this Letter. Unlabeled cells are op-
tically thin due to their small size and refractive index
variations. Therefore, most of the light goes under single
forward scattering, such that the first-order Born
approximation applies as well. ODT, for example, is
based on the first-order Born approximation and cor-
rectly reconstructs unlabeled cell structures [7-11].
Under the first-order Born approximation, we have
|Us(r,w)| < |U;(r, w)|. We assume the incident field is
uniform over the field of view, which allows us to model
it as a plane wave (the description can be generalized to
an arbitrary incident field, as shown in [23]). Therefore,
on the right hand side of Eq. (2), U(r,o)~
U;(r,w) ~ A(w)e”?@?, By performing the Fourier trans-
form (FT) of Eq. (2) with respect to r, we obtain the scat-
tered field solution in the wave-vector space as [18,23]

(@) A(o)rlk, .k,

1 1
Sl (i) ©

where we define ¢ = |/f?(») - k3 and k3 = k2 + k2. Con-
sidering either forward scattering, 1/(k, - q), or back-
ward scattering, 1/(k. + q), and taking the inverse FT
with respect to k., we have

S @

_ﬁo( )
where O, denotes 1D convolution over z. Using the
definition, the convolution in Eq. (4) is evaluated as
[y(k,,2)e?@?Q,ei1? = ¢i4%y[k, , q — f(w)]. Therefore, we
can immediately evaluate Eq. (4) as

U,(k,w) =

Utkr.2.0) = T2 A () {x(kl )i

2 192
Uyths.zi) = PO g gl Ga)
2 —1qz2
Uplky,z0) = PH@A@TE @) GD)

2q

where Uy and U, are the forward and backward scat-
tered fields, respectively. Note that, although we assume
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a dispersionless medium, the scattered fields have strong
dependence on the optical frequency. In most interfero-
metric microscopy experiments, the measured signal is
the cross correlation between the scattered and refer-
ence fields. Under the first-order Born approximation,
where the reference field equals the incident field, the
cross-spectral density can be written as [23]

Wik,.2,0) = Uslk,.2,0)Ul(2p. 0), ©)

where U, (2, w) = A(w)e?’ 3= and zj is the propaga-
tion distance of the reference beam with respect to
2 = 0. The coordinate system is fixed once the scattering
potential is specifically defined. Thus, the general solu-
tions to the inverse scattering are

2qu(kL2 P

e~ 1(az-p-2g)
gsp ™

xky,q-p) =

M eiaz+hzr)

ki, —q-p) = 255)

(7b)

where Wf and W, are the forward and backward mea-
sured fields, and S(B) = |A(f)|? is the power spectrum
of the incident field. Note that, in experiments, we usu-
ally measure S(4) [18]. Therefore, in order to obtain S(f5),
we need to consider a Jacobian transformation, i.e.,
S(p) = -22S(1)/ (2zn). If W;(2) and W, (4) are measured,
as in Fourier-domain OCT, the Jacobian also is necessary
in order to transform W to the f domain.

There are several significant implications of Eq. (7).
First, it establishes the 3D reconstruction model for
ODT. As shown in the scattering potential y, the object
sectioning is determined by q — f in transmission and
—q-p in reflection. In other words, the 3D
reconstruction can be achieved by scanning the incident

plane wave angle, ¢ = ,/#* — k%, or scanning the fre-

quency, p. Notice that, to numerically reconstruct the
3D object, a resampling of the axial frequency k., as

k.=q-p= VﬂZ_ki_
previously, regularization or sparse deconvolution meth-
ods can be used to obtain uniform object reconstruction
[16,18,24]. In particular, Eq. (7b) can be used for high-
resolution Fourier-domain OCT, without the far-field
approximation used in [16]. Finally, Eq. (7) also
describes the scattering measurement in angle-resolved
LCI (aLCI) for determining depth-resolved angular scat-
tering from tissues, without the need for the Mie theory
assumption (note that k| is proportional to the sine of the
scattering angle) [25,26].

In order to integrate the forward and backward scat-
tered signal in Eq. (7), with respect to frequency g, and
obtain the time-domain solution, we use the Fresnel
approximation. For an imaging system under this
approximation, using the Taylor expansion, we have

f is necessary. As demonstrated
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2
q= /P kiNﬂ(l—:?), thus,
©)
2
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Therefore, the solutions to 3D object reconstruction us-
ing forward and backward scattering become

K2 N
(k) ~-
”(’”’ 25~ )

In the following, we provide a physical interpretation for
Eg. (9). In elastic scattering, we have the dispersion re-
lation |k,| = |k;| = f, where k; = k, + k. and k; are the
scattering and incident wave vectors, respectively.
Figure 2(a) shows a cross section of the Ewald sphere
of radius g, which explains the sectioning effect. In the
right triangle ABC [Fig. 2(a)], the length of the segments
BC, AC, and BD is related to the wave vectors as BC =
|pl, AC =2 and BD = |k,|, where p =k, - k; is the
momentum transfer wave vector. Using the similarities
of triangles ABC and BCD, BD? = AD - DC, meaning that

2R W (k1,2 )

(2P
o iPe-2r) g3y (92)
pS(P)

22Wy(k,, 2, p)

(PEten) ity (9b)
BS(P)

K = 1B + k|| ~ k.| ~ 2815 -~ k.. (102)

which implies

]{22

| - k.| = —- (10b)

| - k.| is the axial projection of p, p, = k% /23, whose
spread determines the sectioning in z. Note that this
projection appears explicitly in Eq. (9a) through the scat-
tering potential, y(k,,k? /2/3). This is expected, as meas-
uring the scattered field at a scattering wave vector
provides a single spatial frequency of the object. Consid-
ering the wave-vector geometry described in Fig. 2(b),
we find that, in backward scattering, the momentum
transfer wave vector has a projection of p, = -26 +
k% /23, which also appears in Eq. (9b). From the compari-
son of the two wave-vector geometries, we see that back-
scattering has a better sectioning effect due to the longer
axial projection coming from 2.
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Fig. 2. Interpretation of sectioning effects on the Ewald
sphere. (a) Forward scattering wave-vector relations. (b) Back-
ward scattering wave-vector relations.

Next, we derive the time-domain tomographic
reconstruction model in transmission and reflection
geometry. At 2 = zp, the forward scattering interference
signal W, described in Eq. (9a), becomes

2 kiz
Wik, 20) & s S (ﬂ)x(kl, ) (11

2p

In order to obtain the time-domain solution, we perform
the inverse FT over Q = Ic_zL /2, which ensures proper re-
sampling of k.. As f = k? /2Q, the Jacobian transforma-
tion relates the power spectrum S(f) and S(Q2):

_se@) Zk_i _2025(Q)

S =5@) 5 = =
1

dap

Note that Q has a unit of m~!, and its conjugate variable is
ct, with ¢ the speed of light in the medium and z the time
delay between the reference and object field. Using the
new variable, Eq. (11) becomes

(12)

Wik, 2,Q) ~ im(g)x(kl,g)e 0 (13)

Taking the inverse FT of Eq. (13) with respect to Q, and
using the FT property, QS(Q)E» —1dl'(ct) /dct, we obtain

1 al“o(kl,cr)®

Ff(kL’ 2, CT) = 21_2/2 a( ) CT){(k_L’ CT — Z), (14)

where I’ is the temporal autocorrelation function of the
source field, defined as

Lok, . ct) = FTYS(Q)} = [Ty (k. cr)|e’@er. (15)

For simplicity, here we assume a symmetric optical spec-
trum. Under the slowly varying envelope approximation
for Ty,

9|l (c7)|
o(ct)
~ QT (k, , c7). (16)

aro (k 1 CT)
o(cr)

chr

= ’IZQF()(kJ_, CT) + —

With this approximation, the temporal cross-correlation
function simplifies to

Lk, 2 c0) » _QFO(kJ_’CT)®cr)((kJ_»CT 2. AD

Equation (17) provides the reconstruction model for a
transmission measurement with LCI. This is analogous
to a transmission OCT. This equation indicates that the
axial reconstruction can be obtained by simply scanning
the delay cz or by translating the object in z. As a result
of the convolution operation, the axial resolution is given
by the width of I'y, i.e., the coherence length of the field.
If the source I' is measured, deconvolution or regulari-
zation methods also can be used to improve the axial
reconstruction of y.



In backscattering, for z = 2z, Eq. (9b) becomes

1 k2 [3 l;ili— 2
Wylks 2. f) ~ Wﬂsw)x(kb - 2ﬁ)e B

In order to obtain the time-domain reconstruction model,
we define Q = k2 /25 — 2B. Thus, = (-Q + |/ Q> +4k%) /4

(the negative solution for f is unphysical). Again, consid-
ering the Jacobian transformation,

g g dQ g 4 692-1-4162L
B = (Q)@— (Q)m,

Eq. (18) becomes

(19)

2 ,
Wylkr.2.5) ~ - —5 Q* + 4k1S(Q)r (k. Q). (20)

When k, < |@|, under the Fresnel approximation, we can
use the Taylor expansion by keeping the linear and quad-
V@ + 4k3 ~ Q + 2k% /Q. Further, under the

Fraunhofer approximation, only the linear term is kept,
Q + 2k% /Q ~ Q; thus, Eq. (20) becomes

ratic terms,

2 )
Wylky.2.5) ~ —5 QS(@) (k.. Q)e'%. @D

This equation resembles Eq. (13) and can be used to ob-
tain the temporal correlation function in Eq. (17) as well.
However, the meaning of the variable @, which deter-
mines that the sectioning is different than Q, @ introdu-
ces a better sectioning effect due to the extra -2 factor
[15,16]. From Eq. (20), we also see that light scattering
associated with the scattering vector k, affects the
reconstruction in time-domain OCT.

In summary, we presented a new way of solving the
inverse scattering problem in the wave-vector space
[Egs. (7Ta) and (7b)], without far-field approximations.
This method provides a theoretical foundation for achiev-
ing high-resolution Fourier-domain 3D reconstructions.
We applied our method for systems under the Fresnel
approximation and formulated the Fourier- and time-
domain 3D reconstruction models in transmission and
reflection. The models are expected to improve experi-
mental results by achieving spatially invariant high-
resolution reconstruction with low-coherence light.
Aside from solving inverse scattering problems, we envi-
sion solving wave equations in the wave-vector space,
i.e., bypassing the Green’s function, to be widely used
in the future for many other optical problems.

As quantitative phase imaging and light scattering are
now merged into a single discipline, we anticipate that
better understanding of light-tissue interaction will
emerge. In particular, due to lack of better tools for
studying tissue scattering, researchers have assumed
for a long time the size distribution of spheres, scattering
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independently and, thus, obeying Mie theory. Today, QPI
of thin tissues is much more informative, revealing strong
spatial correlations in unlabeled tissues and connecting
these to the scattering of the bulk [27].
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