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In this Letter, we formulate a mathematical model for predicting experimental outcomes in quantitative phase im-
aging (QPI) when the illumination field is partially spatially coherent. We derive formulae that apply to QPI and
discuss expected results for two classes of QPI experiments: common path and traditional interferometry, under
varying degrees of spatial coherence. In particular, our results describe the physical relationship between the spatial
coherence of the illuminating field and the halo effect, which is well known in phase-contrast microscopy. We
performed experiments relevant to this common situation and found that our theory is in excellent agreement with
the data. With this new understanding of the effects of spatial coherence, our formulae offer an avenue for removing
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halo artifacts from phase images.
OCIS codes:

Phase retrieval.
http://dx.doi.org/10.1364/0L.39.005511

Recently, quantitative phase imaging (QPI) has enabled
new research areas thanks to its ability to quantify the
optical path length fluctuations across transparent spec-
imens [1]. Measuring the complex transmission function
associated with a transparent object enables new studies
in both materials (see [2—4] and references therein) and
life sciences [56—-12]. A number of methods have been pro-
posed for QPI (see [1] and references therein). The
common principle of these methods is optical interferom-
etry, in which a reference field, U, (r), is superposed with
a sample field, U (r), with r = (2, y) being the 2D spatial
coordinate within the image plane. Depending on the way
the reference field, U,, is obtained, we can separate QPI
methods into two groups: (1) traditional interferometry
and (2) common path interferometry. In the first group
[Fig. 1(a)], the reference field U,(r,?) is identical to
the llumination field, U;(r, t), carrying no sample infor-
mation. In this case, the sample field is the illuminated
field modulated by the sample, Ug(r,t) = U;(r, )T (r),
where T is the transmission function of the object, gen-
erally complex. Throughout this manuscript, we assume
dispersion-free specimens, such that T is independent of
the frequency w. Note that in QPI, the quantity of interest
is the phase of this transmission function, ¢(r) =
arg[T(r)]. Methods following the traditional principle in-
clude digital holographic microscopy [1,13-15], Hilbert
phase microscopy (HPM) [16], digitally recorded interfer-
ence microscopy with automatic phase shifting
(DRIMAPS) [17], and optical quadrature microscopy
(OQM) [18], etc. On the other hand, in the common path
interferometry group, the reference field, U,(r,t), is
derived by spatially filtering the sample field, U(r, ).
Examples of these methods include Fourier phase
microscopy (FPM) [19], diffraction phase microscopy
(DPM) [2,20,21], and spatial light interference micros-
copy (SLIMD [10,22].

Note that, although a qualitative method, phase
contrast microscopy is a form of common-path
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interferometry [1]. A particular case of common path
interferometry for QPI is based on using the transport
of intensity equation [23]. Sometimes this method is
referred to as “non-interferometric” because it relies
on measuring several intensity images around the image
focus, without a separate reference field. However, the
image itself is just a complicated interferogram, as
pointed out early on by Abbe [24]. Thus, the phase infor-
mation in this case is carried by the interference between
the scattered and unscattered components of the image
field, much like in phase contrast microscopy [25].
Although the transport of the intensity method was ini-
tially proposed for deterministic fields [26,27], later it
was applied with partially coherent fields [28]. A more
rigorous description of these measurements, employing
the coherence mode decomposition of stochastic fields,
was reported later by Zysk et al. [29].

In this Letter, we study the effects of the spatial coher-
ence on the outcome of QPI measurements in both tradi-
tional and common path experiments. The measurable
quantity in QPI is the phase of the spatially dependent,
temporal cross-correlation function of the sample and
reference field, evaluated at zero delay, = = 0, namely

L (r.r, 0) = (Us (r. ) U (r. 7)), D

where the angular brackets denote averaging over the
time-varying ensemble of the fields. Throughout this Let-
ter, we assume the fields are ergodic and, thus, stationary.
Thus, the ensemble averaging in Eq. (1) canbe replaced by
time averaging. As a result of the generalized Wiener—
Khintchine theorem [30], I'; ,.(r, r, 7) is the Fourier trans-
form of the cross-spectral density, W ,.(r,r, w). Thus, ac-
cording to the central ordinate theorem (see, e.g., [1]),
Eq. (2) can be written in terms of Wy, as

I, (r,r,0) = /Ww(r, r,w)dw. )
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Fig. 1. Traditional and common path QPI configurations.
(a) Traditional interferometry: the illumination field U;(r) is
split into the sample field, U,(r), and a reference field, U, (r),
which interferes at the CCD plane. (b) Common-path interfer-
ometry (DPM setup): the sample field is relayed at the output
port of the microscope. The reference field U, (r) is derived by
spatially filtering the sample field, U,(r). The first-order diffrac-
tion pattern generated by a grating G, is used as the sample field
at the detector plane. (c¢) Low numerical aperture of the con-
denser (NA.,,) enhances spatial coherence of the illumination
field. (d) High (NA.,,) diminishes the spatial coherence of the
illumination field.

Here the cross-spectral density is defined as by
W, (r.r,0) = (Us(r,0)Uy(r,w)) where Ug(r,w) and
U,(r,w) are the Fourier transforms of Ug(r,t) and
U, (r, 1), respectively. Again, the angular bracket denotes
the ensemble averaging. We now derive the specific forms
of Eq. (1) for traditional and common-path interferometry
and describe how spatial coherence affects accurate
retrieval of the object function T'(r).

Traditional interferometry. Let us consider the case
where the reference field is simply a replica of the illu-
mination field, U,.(r,w) = U,(r, ). The sample field is
given as U (r,w) = T(r)U,(r, w). Modalities falling into
this categories include, but are not limited to [31,15]
and [32]. For such cases, Eq. (1) becomes

I, (r,r,0) =T(r) [Si(r, w)dw. ®)

Here, S;(r,w) = W;(r,r,w) is the spatially dependent
power spectrum. Since the second factor on the right
hand side of Eq. (3) is a positive quantity, it follows that
the measured phase, ¢,,(r) = arg[[, .(r,r,0)], is identical

with the phase of interest, ¢(r) = arg[T'(r)]. Therefore,
QPI measurements can be performed accurately regard-
less of the spatial coherence of the illumination, as long
as the reference and illumination fields are identical.
Note that obtaining the cross-correlation function I'y , ex-
perimentally involves introducing controllable phase dif-
ference between the two fields, either in space or time
[see, e.g., Chap. 8 in Ref. (1)].

Common-path interferometry. Next, let us consider
the case when the reference field is derived by spatially
filtering the sample field via, for example, passing the
central portion of its Fourier transform through a small
pinhole [Fig. 1(b)]. Denoting the spatial filtering kernel
characterizing this derivation by &, (r), the reference field
can be written in explicit forms as

U,(r,w) = U(r, a))®rho (r), 4)

where ®, denotes the two-dimensional convolution op-
erator. In this case, the temporal cross-correlation func-
tion is obtained by combining Egs. (2) and (4), namely

Is, (r,r0)= T(r)/[/Wi(r, r’,a))hg(r—r’)T*(r’)dzr’]dw.
®)

Note that the quantity between square brackets in Eq. (5),
W;(r,r', w), is the cross-spectral density of the illumina-
tion field at the sample plane. Let us consider that the
illumination field is statistically homogeneous, i.e.,
W;(r, ¥, w) = W;(r -1, w) such that the expression for
the cross-correlation function becomes

Iy, (r,r,0) = T(r) /|:/ W, (r, r’,a))da)j|h’ok(r -r)T*(r)d?r
= T(r) /Fi(r -r,0)hi(r-r)T*()d?r
= T[Tk, ©)

where we have defined h(r) = I'} (r, 0)k, (r). Equation (6)
establishes a relationship between the measurable quan-
tity in QPI, I, and the transmission function of the ob-
ject, T, when: (1) the illuminating filed is spatially
partially coherent and characterized by the correlation
function, T';(r,0), and (2) the reference field is obtained
by blurring the sample field via a kernel £, (r). As a side
note, expanding the condenser aperture of the illumina-
tion reduces the degree of coherence for the illumination,
i.e., I; becomes narrower and vice versa. In contrast to
the previous case, now the measurable quantity,
Is,(r,r,0), is no longer just the transmission function
T(r), multiplied by a positive function. The measured
phase, ¢,,, differs from the expected value, specifically

P (¥) = p(r) - arg[(TO ) (1)]. (M

Equation (7) is the key result of our Letter. It indicates
that the measured phase at each point in the field of view
depends on the phase at neighboring points, which is the
result of the convolution with the kernel h(r). It is



physically insightful to discuss two asymptotic cases:
(i) extremely narrow h, i.e., h(r) — 6(r) and (ii) extremely
broad A, i.e., h(r) ~ const. The first case applies when the
illumination field is completely incoherent, which results
in a kernel 2 much narrower than function 7. Conse-
quently, (T®,h)(r) — T'(r), and the measured phase
vanishes,

P (r) ~ 0. ®

Thus, Eq. (8) establishes the impossibility of measuring
any phase information using spatially incoherent light,
even when the spatial filter used to render the reference
field is perfectly closed, i.e., h, = const. By contrast,
if the illumination field is perfectly coherent,
W;(r-r')~const, Vr,r, and, in addition, the spatial
filtering is perfect (h, = const.), h becomes much
broader than the object function, 7'(r). In this case, we
have (T®,h)(r) = const., which results in an accurate
measurement,

P (r) = p(x). ®)

All situations of experimental relevance exist between
the two extreme cases of complete coherence and com-
plete incoherence, described by Eq. (8) and (9), respec-
tively. When the coherence area of the illumination field
is comparable with the size of the object of interest, the
measured phase map misses the low frequencies that are
contained in the function 7®,k. This artifact is well
known as the “halo effect” in phase contrast microscopy
[25,33].

Next, we show a comparison between experimental
measurements and our theoretical prediction. Our mea-
surements were performed using DPM [Fig. 1(b)] with
different values of the condenser numerical aperture,
NA_.,n)- More details about the setup and obtaining the
correlation function, I';,.(r,r,0) from the interference
pattern, can be found elsewhere, e.g., [34]. For this
experiment, transparent quartz micropillars were fabri-
cated with known dimensions to serve as control
samples. A 1” quartz wafer was patterned using SPR
51la positive photoresist and transferred to the quartz
substrate by etching in a reactive-ion etcher (RIE) using
a CF4 (Freon 14) plasma, resulting in square micropillars
of various widths and a height of 123 nm, as measured by
the Alpha Step IQ Profilometer. The refractive index of
quartz used in the simulation was 1.545, and the center
wavelength of the source was 574 nm as measured exper-
imentally [35]. We obtained the phase maps and topogra-
phy associated with 5, 10, 20, and 40 pm width pillars.

Figures 2 and 3 show a comparison between our theo-
retical model and experimental measurements taken
using DPM. In order to model the effects of spatial coher-
ence on QPI measurements, calculations based on Eq. (7)
were performed in MATLAB for the case of monochro-
matic light. In our calculations, the DPM pinhole filter
was assumed to be perfect, i.e., h,(r) ~ const which is
a good approximation when using a 10-um pinhole under
the current DPM configuration [35]. The spatial power
spectrum associated with the condenser aperture is
approximated very well by a Gaussian function (see inset
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Fig. 2. Comparison between measured and calculated profiles
for quartz pillars, as described in text. The NA,,, values are
decreasing from (a) to (e), as shown above each topography
profile.
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of Fig. 3). Clearly, our calculation predicts accurately the
phase reduction under partially coherent illumination.
Furthermore, our model also accurately describes
artifacts in the measured topography, i.e., the halos com-
monly observed in QPI and phase contrast microscopy
[1,35]. Notice that opening up the condenser aperture re-
duces the spatial coherence to the point where only
edges of the pillar are reconstructed in the phase image.
However, using smaller pinholes for spatially filtering the
illumination light results in increasingly accurate phase
and topography measurement, as summarized in Fig. 3.
In other words, as the coherence area is increased, the
halo diminishes and the height map converges to the
ground truth.

In sum, we presented a quantitative description of the
role of spatial coherence in QPI for both common-
path and noncommon-path configurations. This model

:---§~~~
= NG AR I
. \\ 'u\,
A ~ H 1

] S —
110 ===t~

T
1
1
1
1
1
1
m
I
T
1
I
I
> ‘i-

Height (nm)

N
~

- :".3.::;...;..: ~-=£|

-1 - - -
10> 10° 10"
NA

con

Fig. 3. Comparison between measured (markers) and
calculated [Eq. (7)] pillar height values (lines) versus numerical
aperture of the condenser NA_.,,, for 4 different pillars. The inset
compares the normalized intensity measured from the con-
denser aperture as a function of spatial frequency in rad/pm
for a 200 pm pinhole (NA.,, = 0.0072) to a Gaussian fit function
with full width at half-maximum (FWHM) of 0.158 rad/pm.
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explains the presence of the halo effect and the observed
reduction in measured height. Our formulas are expected
to set a foundation for further work in the correction of
aberrations and phase inaccuracies in partially coherent
imaging systems.

This work was supported by the National Science
Foundation CBET-1040461 MRI with matching funds from
the University of Illinois and by Agilent Laboratories. For
more information, visit http://light.ece.illinois.eduw/.
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