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Abstract. We propose an intrinsic cancer marker in fixed tissue biopsy slides, which is based on the local spatial
autocorrelation length obtained from quantitative phase images. The spatial autocorrelation length in a small
region of the tissue phase image is sensitive to the nanoscale cellular morphological alterations and can
hence inform on carcinogenesis. Therefore, this metric can potentially be used as an intrinsic cancer marker
in histopathology. Typically, these correlation length maps are calculated by computing two-dimensional Fourier
transforms over image subregions—requiring long computational times. We propose a more time-efficient
method of computing the correlation map and demonstrate its value for diagnosis of benign and malignant breast
tissues. Our methodology is based on highly sensitive quantitative phase imaging data obtained by spatial light
interference microscopy. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.1.016502]
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1 Introduction
According to the World Health Organization, cancer is a major
cause of death globally.1 Effective treatment strategies require
early and accurate diagnosis of the disease. The gold standard
method for cancer diagnosis is the microscopic investigation of
a stained tissue biopsy by a trained clinical pathologist. Through
this investigation, the pathologist looks for morphological sig-
natures of either normal or abnormal tissue. Being qualitative,
this type of assessment leads not only to interobserver discrep-
ancy but also to automation of some or part of the process
through machine learning where image analysis is complicated
by stain variability.2,3 Ensuring consistency in the disease
signatures extracted through image analysis of stained tissue
remains a significant challenge due to variations in tissue
preparation.4

Quantitative phase imaging (QPI)5 is a label-free microscopy
technique where contrast is generated by the optical path-length
difference (OPD), which is the product of the local thickness and
refractive index of the specimen.5–7 For a thin specimen, such as
a tissue histology, the thickness can be considered spatially
invariant, in which case QPI images are proportional to a
mean refractive index map,8,9 i.e., a refractive index map inte-
grated along the z axis. Since the refractive index is proportional
to the dry mass content of cells and cellular matrix, it informs on
tissue density as well as cell organization within tissue.10,11

Tissue refractive index-based markers have been used in the
past for medical diagnosis and prognosis of several types of
cancers and diseases.12–24 By generating contrast, label-free QPI
lends itself much more readily to automated image analysis
than bright-field microscopy, since stain variation is no longer
an issue.13

In addition to the advantages of label-free imaging, the con-
trast mechanism in QPI provides access to additional markers of

disease, which are of value to histopathology.14,25 In particular,
since QPI systems employ interferometric measurements, they
are sensitive to subwavelength fluctuations in OPD in both
space and time.5 Therefore, local fluctuations in quantitative
phase images inform on nanoscale morphological alterations
of cell structures, due to the dry mass accumulation as well
changes in extracellular matrix components. The tissue metric
referred to as “disorder strength,” a marker of the spatial fluc-
tuations of refractive index, i.e., nanoscale morphological alter-
ations, was first used as a marker for pancreatic cancer diagnosis
by Subramanian et al.26 Their group used a spectroscopic imag-
ing modality to measure this marker and have subsequently
employed it in diagnostic studies related to prostate, colon,
breast, lung, and other cancers.27–36 Thereafter, Eldridge et al.37

successfully extracted the disorder strength from quantitative
phase images and demonstrated the relationship of the marker
to cancer cell mechanical properties. They applied this analysis
to colon, skin, and lung cancer cells to demonstrate an inverse
relationship between shear stiffness and disorder strength.
Building on these results, Muñoz et al.38 used QPI to study
the on-set and progression of shear stiffness changes during
malignant transformation in bronchial epithelial cells. Our
group also showed that the disorder strength measured by spatial
light interference microscopy (SLIM), a sensitive white light
QPI method, is a quantitative marker of malignancy that can be
used to classify benign and malignant breast tissue microarray
(TMA) cores.8

In this paper, we propose the local spatial autocorrelation
length as an intrinsic marker of nanoscale morphological alter-
ation in fixed tissue biopsies. Since the spatial autocorrelation
length is related to the spatial refractive index fluctuations,
which has been shown to detect malignancy in previous works,
the length in a local region of tissue can be correlated with
carcinogenesis. In the past, the local spatial autocorrelation
length map was computed by calculating the two-dimensional
(2-D) correlation function over regions of an image leading
to long computation times. In this work, we present a more
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efficient algorithm for calculating the local spatial autocorrela-
tion length map, requiring a smaller number of calculation steps.
We then classify benign and malignant breast TMA cores using
the local spatial autocorrelation length calculated by the pro-
posed algorithm.

2 Materials and Methods

2.1 Spatial Light Interference Microscopy

The phase image, ϕðx; yÞ, measured in QPI is given by the
equation:

EQ-TARGET;temp:intralink-;e001;63;622ϕðx; yÞ ¼ 2π

λ

Z
Lðx;yÞ

0

nðx; y; zÞdz; (1)

where nðx; y; zÞ is the refractive index contrast between the
tissue and the surrounding medium, Lðx; yÞ is the thickness of

the tissue, and λ is the illumination wavelength. Here, we note
that the intratissue refractive index fluctuations are integrated
along z direction. In this work, we use 4-μm-thick tissue slices
with small lateral variation in thickness [Lðx; yÞ ≈ L] as the
specimen.

A schematic of the SLIM setup is shown in Fig. 1(a). The
SLIM module is attached to a commercial phase contrast micro-
scope (PCM). The lamp filament is imaged onto the condenser
annulus (Köhler illumination conditions), which is located at the
front focal plane of the condenser lens. The specimen is located
at the back focal plane of the condenser lens, and front focal
plane of the objective. The scattered and unscattered fields
are relayed by the objective and tube lenses. As a result, the
expanded phase contrast image that has the intensity distribution
in accordance with the phase contrast caused by the specimen is
observed at the image plane. However, because the output of
PCM is qualitative, the phase image, ϕðx; yÞ, cannot be directly
retrieved from this image. The SLIM module extracts ϕðx; yÞ by

Fig. 1 SLIM system. (a) Optical setup. (b) Phase patterns displayed on LCPM and corresponding
intensity patterns captured by CCD. (c) Example of quantitative phase images of benign and malignant
breast tissue cores and their expanded views.
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phase modulating the incident light with respect to the scattered
light. The field at the image plane is Fourier transformed by the
lens L1, such that the unscattered light can be spatially isolated
from the scattered light. Since the incident light has the ring
form, by displaying the corresponding ring pattern on the reflec-
tive liquid crystal phase modulator (LCPM), we ensure that the
scattered light remains unaffected. Four phase shifts are applied
to the unscattered light at increments of π∕2 rad, as shown in
Fig. 1(b). The corresponding four images captured by the charge
coupled device (CCD) are obtained. Consequently, the quanti-
tative phase image is retrieved as described in Ref. 5. Figure 1(c)
shows the quantitative phase image and its expanded view of
benign and malignant breast tissue samples.

2.2 Breast Tissue Microarrays

The samples comprised a TMA of cores constructed from
breast tissue biopsies of 400 different patients. Each biopsy was
formalin fixed and paraffin embedded before sectioning it into
slices of 4-μm thickness each using a microtome. Two parallel,
adjacent sections were selected from each biopsy, and one of
these sections was stained using H&E, leaving the other one
unstained. Cores were then constructed for both the stained
and unstained tissue, and these were mounted on separate slides
after deparaffinization, using xylene as the mounting medium.
The stained samples were imaged using a bright-field micro-
scope, and their images were used by a board-certified
pathologist for diagnosing each core. In this paper, we studied
benign tissue as well as cancerous tissue from three different
grades: benign (N ¼ 20), malignant (grade 1, N ¼ 16), malig-
nant (grade 2, N ¼ 16), and malignant (grade 3, N ¼ 14). Each
patient consented to their tissue samples being used as part of
the study, and the process of obtaining consent was approved
by the Institute Review Board (IRB Protocol Number 2010-
0519) at University of Illinois at Chicago (UIC). The data analy-
sis was conducted on the samples at the University of Illinois
at Urbana–Champaign (UIUC) after all patient identifiers
had been removed. The procedures used in this study for con-
ducting experiments using human subjects were also approved
by the institute review board at UIUC (IRB Protocol
Number 13900).

2.3 Formulation for Local Spatial Autocorrelation
Length Map

As mentioned, the local spatial autocorrelation length depends
on the morphological disorder, i.e., local refractive index fluc-
tuations. When the refractive index is spatially disordered, the
spatial autocorrelation length within the local area will shorten.

In general, the spatial autocorrelation length is calculated as the
width of the spatial autocorrelation function. According to the
Wiener–Khinchin theorem, the 2-D spatial autocorrelation func-
tion can be obtained by taking inverse 2-D Fourier transform of
the spatial power spectrum. In other words, two 2-D Fourier
transforms for each image, leading to long computation times.
Thus, to avoid this problem, we propose a procedure that
performs these calculation in the frequency-domain.

First, as shown in Fig. 2, we define the local spatial autocor-
relation function as

EQ-TARGET;temp:intralink-;e002;326;642Γðx; y; x 0; y 0Þ ¼ tðx; y; x 0; y 0Þ ⊗x;y tðx; y; x 0; y 0Þ; (2)

where ⊗x;y denotes the 2-D correlation operation over ðx; yÞ.
Function tðx; y; x 0; y 0Þ is a local phase function centered at
ðx 0; y 0Þ and is expressed as

EQ-TARGET;temp:intralink-;e003;326;577tðx; y; x 0; y 0Þ ¼ ϕðx; yÞwðx; y; x 0; y 0Þ
− hϕðx; yÞwðx; y; x 0; y 0Þiðx;yÞ; (3)

where wðx; y; x 0; y 0Þ ¼ rectðx−x 0
a Þrectðy−y 0

a Þ is a local window
function centered at ðx 0; y 0Þ, of width of a. The angular brackets
denote averaging within the local window.

Next, we define the local spatial autocorrelation length
map, ρðx 0; y 0Þ, as the variance of the probability density,
which can be obtained by normalizing Γðx; y; x 0; y 0Þ byRR

Γðx; y; x 0; y 0Þdx dy:

EQ-TARGET;temp:intralink-;e004;326;445ρ2ðx 0; y 0Þ ¼
RR ðx2 þ y2ÞΓðx; y; x 0; y 0Þdx dyRR

Γðx; y; x 0; y 0Þdx dy : (4)

Here, ρðx 0; y 0Þ can be related to the bandwidth map of the
spatial power-spectrum, τðx 0; y 0Þ, as ρðx 0; y 0Þτðx 0; y 0Þ ¼ 2π.
The local bandwidth, τðx 0; y 0Þ, itself is defined as

EQ-TARGET;temp:intralink-;e005;326;366τ2ðx 0; y 0Þ ¼
RR ðk2x þ k2yÞjtðkx; ky; x 0; y 0Þj2dkx dkyRR jtðkx; ky; x 0; y 0Þj2dkx dky

; (5)

where tðkx; ky; x 0; y 0Þ is the Fourier transform of tðx; y; x 0; y 0Þ
along ðx; yÞ. Using the differentiation property of Fourier
transforms as well as Parseval’s theorem, this equation can be
rewritten as

EQ-TARGET;temp:intralink-;e006;326;275τ2ðx 0; y 0Þ ¼
RR h��� ∂

∂x tðx;y;x 0; y 0Þ
���2þ

��� ∂
∂y tðx;y;x 0; y 0Þ

���2
i
dxdyRR jtðx;y;x 0; y 0Þj2dxdy :

(6)

Fig. 2 Definition of local 2-D function tðx; y ; x 0; y 0Þ.
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Finally, we can obtain the final result as

EQ-TARGET;temp:intralink-;e007;63;308ρðx0;y0Þ¼2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRR jtðx;y;x0;y0Þj2dxdyRR h��� ∂∂xtðx;y;x0;y0Þ
���2þ

��� ∂∂ytðx;y;x0;y0Þ
���2
i
dxdy

vuut :

(7)

Using Eq. (7), the local spatial autocorrelation length maps
can be calculated as shown in Fig. 3(b), which were obtained
from the phase maps of benign and malignant cores with differ-
ent grades (grades 1, 2, and 3) as shown in Fig. 3(a). We used
the local window with a ¼ 64 pixels (8 μm).

3 Results
We demonstrate that malignant transformation is correlated with
metrics calculated from local correlation maps. The dataset we
analyzed consisted of 20 benign, 16 grade 1, 16 grade 2, and 14
grade 3 malignant cores. As the feature quantities, we use the
value that is obtained by deviding the average by the standard
deviation of the local correlation length. To extract only tissue
regions, the background pixels were segmented out by setting
a threshold in the ρðx; yÞ map. This threshold value was

determined empirically, and all pixels having correlation lengths
below 1.3 μm were treated as background. The maps obtained
after the background pixels reduction process are shown in
Fig. 3(c). This calculation took ∼45 min. per one core,
which consists of 7040 × 7040 pixels (880 × 880 μm2) using
PC with Intel Core i5-3470 CPU (3.20 GHz), 16.0 GB
RAM, whereas it was estimated to take 90 min. without our
algorithm, i.e., with the algorithm using fast Fourier transform
on the basis of the Wiener–Khinchin theorem. This calculation
time can be improved, for example, by using GPU acceleration.

Figure 4 compares the average divided by the standard
deviation of ρ map between benign and malignant cores (grades
1, 2, and 3). The p-values that were obtained by two-sided
Wilcoxon ranksum test are listed in Table 1. Since the p-value
between 20 benign and 46 malignant cores was 0.000876,
the local correlation length correlates with cancer grades.
Furthermore, the results indicate that the statistically significant
differences between cores with >2 intergrade differences. This
means that this label-free marker can be used for separating
the lower risk cases (benign and grade 1) from the higher
risk cases (grades 2 and 3). However, it may need to be com-
bined with other markers for more detail separation of grades.
We conclude that the local correlation map can potentially be

Fig. 3 Example of local spatial autocorrelation length maps. (a) Quantitative phase images, (b) the local
correlation length maps, and (c) the local correlation length maps after applying the mask removing
ρðx 0; y 0Þ < 1.3 μm.
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used by clinical pathologists as a supplementary label-free dis-
ease marker for gauging the onset of malignancy especially in
borderline cases.

4 Summary and Conclusion
We have presented an efficient algorithm for the computation of
the local correlation length within refractive index maps of fixed
breast tissue biopsy slides. This length metric describes the local
refractive index fluctuations within the tissue specimen. Since in
this work the refractive index maps are extracted using SLIM,
which has sub-nanometer optical path length sensitivity, the
correlation length is indicative of nanoscale cellular morphol-
ogy. Standard computation of correlation length maps involves
2-D Fourier transforms, which can lead to long computation
times, especially for large analysis window sizes. We improve
calculation throughput by performing part of the computation in
the frequency domain.

A comparison of the extracted correlation lengths between
benign and malignant TMA cores showed that this metric is
on average smaller for malignant cores indicating increased ran-
domization of tissue morphology (as captured by its refractive
index). Statistically significant differences in correlation lengths

were observed between the two classes (N ¼ 20 for benign and
N ¼ 46 for malignant) indicating that this label-free disease
marker can potentially be used by clinical pathologists for gaug-
ing the onset of malignancy especially in borderline cases.
Furthermore, although the separation between neighboring
grades cannot be achieved without the help of other markers,
the results indicated that the local correlation length can also
be used for separating the lower risk cases (benign and grade
1) from the higher risk cases (grades 2 and 3).

On the other hand, there is room for improvement on the
calculation time and the screening accuracy. For example,
calculation acceleration by GPU will drastically improve the
calculation time, and the optimization of local window size
and combining with other markers such as disorder strength8

will contribute to improve the screening accuracy. Because
SLIM can be implemented as an upgrade of the existing micro-
scopes, the extraction of intrinsic markers from quantitative
phase images obtained through SLIM is expect to be plugged
into the existing pathology work flow. Tissue spatial correlation
information can add to the existing toolbox that the pathologists
already have and help improve diagnosis accuracy and
objectivity.
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