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The thermal fluctuations of membranes and nanoscale shells
affect their mechanical characteristics. Whereas these fluctua-
tions are well understood for flat membranes, curved shells show
anomalous behavior due to the geometric coupling between in-
plane elasticity and out-of-plane bending. Using conventional
shallow shell theory in combination with equilibrium statistical
physics we theoretically demonstrate that thermalized shells con-
taining regions of negative Gaussian curvature naturally develop
anomalously large fluctuations. Moreover, the existence of special
curves, “singular lines,” leads to a breakdown of linear membrane
theory. As a result, these geometric curves effectively partition
the cell into regions whose fluctuations are only weakly coupled.
We validate these predictions using high-resolution microscopy
of human red blood cells (RBCs) as a case study. Our observa-
tions show geometry-dependent localization of thermal fluctu-
ations consistent with our theoretical modeling, demonstrating
the efficacy in combining shell theory with equilibrium statisti-
cal physics for describing the thermalized morphology of cellular
membranes.

red blood cells | shell structures | geometric mechanics | thermal
fluctuations | membrane fluctuations

Geometric mechanics, and in particular the century-old the-
ory of thin shells, has seen a resurgence in recent techno-

logical applications at length scales spanning several orders of
magnitude. Thin elastic surfaces that are curved in their stress-
free state display a host of intriguing and useful properties, such
as geometry-induced rigidity, bistability, and anisotropic momen-
tum transport (1–5). The general applicability of the mechanics
of curved surfaces has wide-ranging consequences for biological
functionality as well; it has been used to describe the desiccation
of pollen grains, the mechanics of viral capsids, and RBCs (6–9).

The effect of geometry on biological membranes is particularly
interesting, because these structures are typically soft enough
to support large undulations in thermal equilibrium. More-
over, biology provides a plethora of complex membrane shapes,
including the endoplasmic reticulum (10, 11) and the membrane
of RBCs. The role of geometry in determining the spatial distri-
bution of their surface undulations is not currently understood,
and there may be important implications for biomembrane mor-
phology arising from the use of geometry to control the spatial
distribution of thermal undulations.

The case of RBCs is particularly instructive. It provides a
unique testing ground for understanding the effect of geometry
on thermal undulations of elastic shells because RBCs are both
soft enough to have significant thermal undulations and natu-
rally have a complex geometry. The RBC membrane is made
up of a lipid bilayer containing transmembrane proteins linked
into a 2D triangular network on the cytosolic side of the mem-
brane by spectrin proteins. However, on scales much larger than
either the thickness of the membrane or the lattice constant of
the spectrin network (12, 13), the composite membrane may
be treated as an elastic shell. This shell controls the elasticity
of RBCs, because they lack a space-filing internal cytoskeleton.

Based on this simplified elastic description and the assumption
of flat membranes, a basic theory for RBC undulatory dynamics
was proposed by Brochard and Lennon (12). Subsequent explo-
ration of RBC membrane elasticity has included micropipette
aspiration (14), electric field-induced deformation (15), optical
tweezers (16), and microrheology, which uses the observed ther-
mal undulations of the membrane to infer elastic moduli (9, 17–
20). These last studies, which did not fully account for RBC
geometry, found an unexpectedly complex spatial distribution
of membrane undulations. Very little was understood about the
effects of curvature in altering the mechanical properties and
equilibrium fluctuation spectrum of the membrane.

In this paper we develop an elasticity theory of curved surfaces
subject to thermal fluctuations and describe how this framework
can be applied to geometrically complex objects. Although our
theory is developed quite generally for any elastic shell, we con-
sider specifically its application to RBC fluctuations, using data
collected from diffraction phase microscopy (DPM) measure-
ments of RBCs. These data produce high-resolution images of
RBC flicker maps, which show a spatial distribution of mem-
brane undulations. This distribution is correlated with the cur-
vature of the cells. We demonstrate that this distribution can
be quantitatively explained by the theory, without an appeal to
active forces or heterogeneous membrane composition.

Our analysis uncovers two generic geometric features that
control the mechanics of membranes: the sign of the Gaussian
curvature, which qualitatively affects cell deformation, and the
existence of singular lines (SLs) where the Gaussian and normal
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curvatures simultaneously vanish. The former has been shown
to determine localized and extended static deformations and to
guide the propagation of undulatory waves on curved surfaces
(1, 4). The importance of the latter, particularly in regard to
the mechanics of cell membranes, has not been adequately
appreciated, although it has been discussed in the context of
isometric deformations of axisymmetric shells (21–23) and the
folding of creased shells (5). The RBC geometry includes an
SL, which leads to the localization of undulations in its vicin-
ity and dominates the structure of the RBC flicker maps. Nei-
ther flat membranes, where stretching and bending deforma-
tion modes decouple, nor shells of strictly positive Gaussian
curvature admit these geometrically induced, anomalously soft
regions.

Thermalized Shallow Shell Theory
We begin by examining the response of an elastic shell subjected
to normal forces. The resulting Green’s function provides insight
into the spectrum of undulatory modes of the surface. We will
later address the spatial distribution of thermal fluctuations on
RBCs using this understanding of the equilibrium population of
undulatory fluctuations. In general, the elastic theory of shells
(materials that are curved in their unstressed state) is remark-
ably complex (24, 25). Solving the full problem is formidable, if
not impossible; for our purposes we consider small-amplitude
undulations on a surface that is only gently curved (i.e., the
local radius of curvature is much greater than the wavelength of
deformation). In this case, the full nonlinear problem of elasto-
statics is known to reduce to the linearized Donnell–Mushtari–
Vlasov (DMV) equations for a “shallow shell” (25) (see Support-
ing Information for a detailed derivation):

B∇4ζ − L[χ] = f (r), [1]

1

S
∇4χ+ L[ζ] = 0. [2]

Here∇2 is the Laplacian operator,∇4 is the biLaplacian, and
ζ(r) defines the normal deflection of the shell from its reference
state, given by the 3D vector r. The in-plane stress is given in
terms of an Airy stress function χ, and the two elastic constants
B and S represent the bending and stretching moduli of the shell,
respectively, and f is the applied normal load.

Eq. 1 ensures normal stress balance across the shell. In-plane
stress is identically satisfied due to the function χ, and the linear
differential operator L= εαηεβξdαβ∂η∂ξ contains all of the cur-
vature information from the surface, where dαβ is the curvature
tensor of the undeformed shape, and εαβ is the antisymmetric
tensor. We must also include a compatibility condition via Eq. 2,
which ensures the surface is physically realizable. In the limit of
a flat membrane where L vanishes, this condition reduces to the
biharmonic equation, which the Airy stress function must satisfy
for stress balance (26).

The operator L is the primary source for coupling between
curvature and elasticity, because it mixes in-plane stress and out-
of-plane deformation through the curvature of the surface. It
takes the form

L =

(
1

Ry
∂2

x +
1

Rx
∂2

y

)
[3]

in a local Cartesian coordinate system {x , y} aligned with the
principal curvature directions on the undeformed membrane
with corresponding radii of curvature Rx ,y . We observe from
Eq. 3 that the coupling of normal to in-plane stress vanishes in
the limit of a flat reference state L→ 0 when Rx ,y→∞; there is
no in-plane stretching of a flat membrane in response to normal
loading. The curvature of the stress-free membrane, however,
couples stretching and bending, and thus curvature influences
the mechanics of normal deformation. The primary cause of

this behavior arises from the Gaussian curvature K = 1/(RxRy).
When K changes sign, the operator L changes type, which leads
to vastly different mechanical deformation characteristics (1, 4).

The mechanics of the shell are controlled by two elastic con-
stants. For thin shells treated as elastic continua, these are
related to the Young’s modulus Y , Poisson’s ratio ν, and thick-
ness t . One finds that B ∼Yt3 and S ∼Yt , showing that suffi-
ciently thin sheets are more compliant to bending than to stretch-
ing. The relative importance of bending to stretching energies on
a membrane with local radius of curvature R can be quantified
by the dimensionless Föppl–von Kármán number γ ≡ SR2/B ∼
(R/t)2. Many materials, such as graphene sheets (27), viral cap-
sids (7, 28, 29), and the tethered lipid bilayer of RBCs lack a well-
defined 3D material analog; nevertheless, the 2D elastic con-
stants remain well-defined. Effective elastic constants of RBCs
have been measured in a variety of ways (14, 20, 30) yielding
B ∼ 5.5kBT and µ̂ ∼ 7.5µN/m, which results in γ ∼ 103.

Consider first the case of uniform membrane uniform curva-
ture. It is convenient to work in the Fourier domain, such that
ζ(r, t) =

∫
ζ̂(q, ω)e i(q·r−ωt)d2qdω. To consider the fluctuations

of the membrane in the overdamped limit (appropriate to the
case of RBCs) we write the normal load in Eq. 1

f (r) = −ξ(r)∂tζ + η(r, t), [4]

where ξ(r) is the hydrodynamic resistance function and η is the
Brownian force. Computing the resistance function for an arbi-
trarily curved membrane is challenging, but unnecessary, if we
restrict our analysis to equilibrium fluctuations [this is a result
of the fluctuation-dissipation theorem (31)]. This more general
Langevin description facilitates future work on time-dependent
height correlations in equilibrium (20) and all correlations in
nonequilibrium (e.g., pump-driven membranes) (32). In a vis-
cous medium we may write the second moment of the force
fluctuations in thermal equilibrium as 〈η(r, t)η(r′, t ′)〉= 2D(r−
r′)δ(t − t ′), where the magnitude D(r) is such that in the
Fourier domain D(q)ξ(q) = kBT . Here and throughout we
use the angled brackets to denote averages over an ensem-
ble of equilibrium states at temperature T ; kB is Boltzmann’s
constant.

Using Eqs. 1 and 2 to eliminate the stress function in favor
of the normal displacement and making use of Eq. 4 we write a
Langevin equation for the membrane undulations in terms of the
response function G(q , ω) as

ζ(q, ω) = G(q, ω)η(q, ω), [5]

where

G(q, ω) =
1

Bq4 + Sm2(q̂)− iωξ(q)
, [6]

and the Gaussian noise has zero mean and a second moment
given by 〈η(q, ω)η(q′, ω′)〉 = 2D(q)δ(q + q′, ω + ω′).

We see from the response function that the spectrum of undu-
latory modes is gapped by m(q̂) =R−1

x

(
β cos2 θq + sin2 θq

)
,

where β=Rx/Ry measures the curvature anisotropy of the
membrane. The unit vector q̂ = q/|q|= (cos θq , sin θq) defines
an angle θq between the wavevector and the direction of
principal curvature Rx . For membranes with positive Gaus-
sian curvature β > 0, the gap in the spectrum remains finite
for all wavevectors. For negative Gaussian curvature, how-
ever, β < 0 and the gap vanishes along the special directions
θ?q =± arctan

(√
−β
)
. In the language of differential geom-

etry, these “asymptotic directions” correspond to curves with
zero normal curvature. Implications for the mechanics of these
curves include extended deformations, preferential flexural wave
propagation, and folding without stretching (1, 4, 5). We will
return to this point in our discussion of the undulations of
the RBC.
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Fig. 1. Equilibrium variance of normal displacement as a function of
the curvature anisotropy β= Rx/Ry . Insets show the schematic shape of
the surface for positive and negative β. The integral in Eq. 7 is evalu-
ated using a low-wavenumber cutoff of q =π and a high-wavenumber
cutoff of q =π

√
γ, in dimensionless units. The Föppl–von Kármán number

increases in the direction indicated by the arrow, corresponding to values of
γ= 103, 104, 105. For increasing γ, the increased importance of stretching
over bending leads to an overall decay in the magnitude of the fluctuations,
but the peak at β = 0 sharpens.

We now compute the equilibrium height fluctuations by inte-
grating over all frequencies and wavenumbers. To do so we intro-
duce a short distance cutoff set by the thickness of the mem-
brane t and a long distance cutoff set by the lateral extent of
the membrane L, which in the shallow theory that we consider is

A

C

B

Fig. 2. Mode spectrum. (A) The eigenvalue spectrum for a freestanding shell as a function of mode number n, for various γ. (Inset) Axisymmetric shell
generated from circular arcs of radius R revolved around a central axis. (B) (Left) The asymptotic curves of a biconcave shell exist only within regions that have
negative Gaussian curvature (black lines). Asymptotic curves terminate at the inner boundary as the Gaussian curvature goes to zero. At the outer boundary,
however, the asymptotic curves are locally tangent to the boundary between negative and positive Gaussian curvature. This indicates the presence of an SL,
where in-plane stress cannot propagate without regularizing bending energy effects. (Right) Schematic of the local coordinate system for evaluating the
boundary layer scaling near SLs. The green regions of the shell have positive Gaussian curvature, and the red is the band of negative Gaussian curvature.
(C) A boundary layer develops across SLs to regularize stress propagation. The size of this layer scales with γ, as shown numerically. (Inset) Fundamental
mode of a free-standing elastic erythrocyte is almost rigid body motion of two surfaces partitioned by the SL. The amplitude of the deformation is arbitrary
in a linear mode analysis and has been enlarged to be visible in the figure. Given the boundary layer size ` and a vertical displacement ∆, the effective
stiffness of such a deformation can be estimated (discussed in the text).

appropriately given by L∼Rx : π/Rx < |q|<π/t . Nondimen-
sionalizing the wavevector q → qRx so that the available range of
wavenumbers is given by π< q <π

√
γ, the variance of the equi-

librium height fluctuations is given in terms of the dimensionless
integral I(γ, β) (see Supporting Information for details):

〈|ζ(0, 0)|2〉 =
kBTR

2
x

B
I(γ, β), [7]

I(γ, β) =

∫ π
√
γ

π

∫ 2π

0

qdqdθ

q4 + γ(β cos2 θ + sin2 θ)2
. [8]

Note that as S→ 0 the fluctuation spectrum reduces to the
Brochard–Lennon result for erythrocyte flicker (12), and for
S > 0 with β= 1 we recover the bare response function of an
unpressurized spherical shell (33).

Asymptotically we may evaluate how the magnitude of fluc-
tuations scale with both the curvature anisotropy β and the
Föppl–von Kármán number γ (see Supporting Information for
details). In the limit of large system size, I(γ, 0) diverges as
q→ 0, which is to be expected because such a shell is cylindri-
cal and thus has a single special direction (along the axis of sym-
metry) where it responds to undulations like a flat plate; for a
free plate, the fluctuation spectrum diverges as q−4 (12). When
β > 0, the stretching term dominates for low wavenumber, and
the lower limit on the wavenumber may be replaced as q→ 0,
yielding I(γ, β)∼β−1/2γ−1/2. For β < 0, the integral is weakly
divergent as q→ 0, resulting in I(γ, β)∼β−1/2γ−1/2 ln(L/t).
With L∼R this implies I(γ, β)∼β−1/2γ−1/2 ln γ. This differ-
ence in scaling behavior arises from the nongapped, extended
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A B C

Fig. 3. Thermalized RBCs examined using DPM. (A) (Top) Schematic of human erythrocyte adhered to a glass substrate. The thickness h(r) of the cell is
measured instantaneously as a function of position using DPM. (Bottom) A schematic of how DPM measures fluctuations in soft cells. Deviations from the
average height 〈h(r)〉 are measured as δh(r), and the difference in optical path length is converted directly into a change in height. Note that the change in
cell thickness is not equivalent to the normal displacement of the cell ζ(r), which deviates from the substrate normal when the cell is substantially curved.
(B) (Top) Average thickness for a representative cell, displaying the characteristic biconcave shape of healthy RBCs. (Bottom) Average fluctuations for a
representative cell. The SD of the cell heights used to determine the fluctuations. The fluctuation profile depends on the radial distance r from the center of
the cell. (C) Radial and ensemble-averaged height profiles for RBCs (dashed line) and associated SD (blue region). Theoretical curves from our finite element
model described below are shown as red lines.

deformations that occur in saddle-shaped shells. These extended
deformations have direct consequences for the spectrum of com-
plete shells, addressed in more detail next. In Fig. 1 we com-
pute numerically the value of the integral in Eq. 7 and find
equilibrium height fluctuations as a function of β for vari-
ous values of the Föppl–von Kármán number. For β 6= 0 the
fluctuations scale as predicted, whereas the fluctuations are
enhanced near the β≈ 0 region. Physically, we expect that
shells containing different signs of Gaussian curvature (so-called
shells of mixed type) to exhibit qualitatively dissimilar regions of
fluctuations.

The Elastic Erythrocyte Model
We have so far examined the effect of spatially uniform sur-
face geometry on undulations. This simplification is reasonable
in cases where the wavelength of the undulations is very small
compared with both the smallest radius of curvature and the
scale over which that curvature is changing. In the presence of
boundary conditions or spatially heterogeneous curvature, as is
certainly the case in RBCs, a more complete shell formulation is
required.

We begin numerically by creating a finite element model for
a linearly elastic shell of mixed type. For simplicity, we use an
axisymmetric shell that is generated from a planar curve. This
curve is composed of two circular arcs of the same radius R, so
that there is no ambiguity in defining a Föppl–von Kármán num-
ber. It can be written as a piecewise function in terms of an arc
length variable s , with a curve C(s) =R {r(s), z (s)}:

C(s) =

{
{sin s, 2 cos s1 − cos s}, s ≤ s1
{sin s + 2 sin s1,− cos s}, s1 + π ≤ s ≤ π/2. [9]

We scale the size of the curve by the radius of curvature R
and choose the single parameter s1 to match approximate RBC
sizes. Fig. 2A, Inset shows the axisymmetric shell generated by
revolving the curve about the z axis for R = 1.4µm and s1 =π/4.
Although this shell has nonconstant Gaussian curvature, the
mechanics may be characterized in terms of a single dimension-
less Föppl–von Kármán number: γ=SR2/B .

Using this 3D model we perform a mode analysis in ABAQUS
(Dassault Systèmes), calculating the eigenvalues and eigenmodes
associated with free vibration. For a free-standing membrane, we
find that there are two distinct classes of eigenvalues (Fig. 2A).

This distinction becomes sharper at high γ (34), where the
softest modes involve large portions of the RBC undergoing
essentially rigid body motions, and coupled only through a thin
boundary layer (Fig. 2C, Inset). In these lowest-frequency modes,
deformation is localized near boundaries between negative and
positive Gaussian curvature. Based on our above analysis, we
expect to see such large deformation in regions where the Gaus-
sian curvature approaches zero, as is necessarily found near
the boundaries on the membrane where the Gaussian curvature
changes sign.

However, there are two such boundaries in the elastic ery-
throcyte model, and the localization of large-amplitude bend-
ing occurs near only one of them. To understand this, one must
consider the asymptotic curves of a surface and a special sub-
set of such curves that we call SLs (21–23). Asymptotic curves
on the surface are those along which the osculating plane of the
curve is locally tangent to the surface (Fig. 2B, Left), where the
asymptotic curves are shown as black lines. These directions cor-
respond to the special directions θ∗q derived earlier for surfaces
with spatially constant curvature. When an asymptotic curve has
zero Gaussian curvature as well (e.g., the blue line in Fig. 2B,
Left) it is an SL [although they have been referred to as “crowns”
or “rigidifying curves” in other contexts (21–23)]. Along such
lines, the shell equations become geometrically singular in that
the undulations there are enhanced just as they are on a flat β= 0
membrane in the uniform curvature theory. The low-frequency
or “soft” modes of a geometrically complex membrane are domi-
nated by large length scale nearly rigid body motions of regions of
the membrane separated by these SLs, which serve as a locus for
weak, bending-dominated couplings between the stiffer regions.
As a consequence, the spatial distribution of SLs controls the
low-frequency undulatory spectrum of geometrically complex
membranes.

To further examine the peculiar behavior of undulations near
SLs we consider the two curves on an elastic RBC where the
Gaussian curvature of the shell changes sign (Fig. 2B). Defin-
ing a local coordinate system {u, v} along these curves, we use
the DMV equations to characterize the singular nature of the
shell equations about these curves. The inner curve is not sin-
gular, even though it is a boundary between different signs of
Gaussian curvature. The outer curve, however, requires further
analysis. Near the outer curves the shell appears toroidal, with
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1/Ru ≈ v/R2, 1/Rv ≈ 1/R. If we consider only the most singu-
lar terms, the DMV equations become

B∂4
v ζ −

v

R2
∂2

vχ = η,
1

S
∂4

vχ+
v

R2
∂2

v ζ = 0. [10]

We rescale variables ζ̄ = ζ/R, χ̄ = χ/B , and v̄ = v/`, where
` is the characteristic size of the boundary layer. Eliminating χ̄
and keeping only the most singular terms yields the dominant
balance of γ`6 ∼ R6. For an elastic membrane with well-defined
thickness this gives ` ∼ t1/3R2/3, as calculated for toroidal shells
elsewhere (22). Our finite element analysis is consistent with this
scaling as shown in Fig. 2C. We may also calculate the energy
content of this boundary layer. Because bending energy regu-
larizes the divergence in the stress, the bending energy domi-
nates the contribution in the layer. Bending energy in a curved
shell with vertical displacement ∆ (Fig. 2C, Inset) is given by
EB ∼

∫
B(1/Ru + 1/Rv )2dA ∼ B(∆/`2)2(R`) ∼ (BR/`3)∆2.

This indicates an effective stiffness keff ∼ Sγ−1/2 in general,
or keff ∼Yt2/R for a shell with well-defined thickness. As noted
by Audoly and Pomeau (22), this mode of deformation, arising
from geometric conditions in shells, has an anomalous stiffness
in between stretching (keff ∼ S ) and bending (keff ∼ S/γ).

DPM
Finally, we compare our geometric model to measurements per-
formed using DPM, which allows for high temporal and spa-
tial resolution of the RBC thermal fluctuations (35, 36) (see
Supporting Information for details and Fig. S1 for experimen-
tal schematic). DPM measures the phase change accumulated
through fluctuating surfaces. Because the index of refraction of
the RBC interior is spatially homogeneous, changes in the optical
path length δh(r) (Fig. 3A) correspond directly to changes in the
cell’s thickness projected along the path of the light. Thus, DPM
can observe membrane fluctuations on the order of 10 nm, but is
insensitive to surface deformations that do not change the path
length through the cell (e.g., a mode generating a symmetric dis-
placement of the membrane at diametrically opposed points on
the cell boundary). The fundamental mode of deformation for
the free-standing elastic RBC in the previous section (Fig. 2C,
Inset) is thus invisible to DPM because of the pseudorigid body
deformation. Attaching the cell to a substrate introduces pinned
boundary conditions and the points of contact changing the fun-
damental deformation mode [compare the sketches at the bot-
tom of Fig. 3A (pinned at the substrate) to that in Fig. 2A, Inset
(no substrate)].

Typical datasets for both the average height profile 〈h〉 and the

SD σh =
√
〈(h − 〈h〉)2〉 are shown in Fig. 3B. The height data

reproduce the characteristic biconcave shape of most healthy
RBCs, whereas the fluctuations are localized in a band at finite
radius from the axis of symmetry. We collected data from a small
ensemble of five cells and obtained averages (over all cells and
over azimuthual directions about the cells’ symmetry axis) and
SDs for 〈h〉, σh (see Fig. 3C, Top, where the dashed black lines
represent the average height and the blue bands represent sam-
ple SDs). In Fig. 3C, Bottom we show the SD of the fluctuations
about these mean heights

√
〈h2(r)〉. The green and red regions

denote calculated regions of positive and negative Gaussian cur-
vature, respectively. The fluctuations clearly peak in the region
of negative Gaussian curvature, as expected.

To quantitatively compare with our model predictions we
construct a more specific finite element model using the pre-
cise geometric data of the RBC. Taking the ensemble-averaged
height field from the experimental data in Fig. 3C we gener-
ate a smoothed, axisymmetric shell model. We first extract the
height field corresponding to the dashed black line and trun-
cate the model at r = 3µm, because substantial lateral fluctua-

tions lead to enhanced experimental error for larger radii. By
reflecting this height profile vertically and connecting the exte-
rior portions of the curve with a circular arc we generate a
complete axisymmetric shell from the RBC shape data. Using
existing values for the elastic moduli of RBCs (20) we perform
another eigenvalue analysis, as in the previous section. With
pinned boundary conditions on the lowest point of the shell
representing adhesive contact with the substrate, we generate
eigenvalues and eigenmodes {λn ,ΦΦΦn}, which have a character
similar to those of the free-standing elastic erythrocyte. Armed
with this eigenvalue spectrum we invoke the equipartition the-
orem to calculate the fluctuations that would be observed in
thermal equilibrium. We write the equilibrium deformation field
u =

∑
n anΦΦΦn , where the amplitudes an must satisfy a relation-

ship given by thermodynamic equilibrium. The equipartition the-
orem guarantees that each of the modes calculated will contain
an energy of kBT/2, and thus the amplitudes an must satisfy
〈anam〉= 1

2
(kBT/λn)δnm . Nondimensionalizing the eigenvalues

so that λn = (B/`2)Λn , with ` the boundary layer thickness,
yields the height profile variance

σ2
h =

kBT `
2

B

∑
n

|ΦΦΦn · ẑ|2

Λn
, [11]

where we have taken the appropriate projection with the unit
vector ẑ to project deformations onto the changing optical path
length. The red line in Fig. 3C, Bottom corresponds to these
predicted fluctuations. We find that they are consistent with
those observed by DPM with no free fitting parameters. We con-
clude that one can understand the spatial distribution of thermal
undulations on the RBC with a minimal model that assumes all
spatial variation results from geometry alone; the elastic prop-
erties of the cell membrane may be assumed to be spatially
homogeneous.

Summary
The geometry of the undeformed reference state of an elastic
shell strongly affects the spectrum of its undulatory modes. In
particular, the existence of SLs on surfaces with spatially inho-
mogeneous curvature, ones that include boundaries between
regions of positive and negative Gaussian curvature, introduces
a set of low-frequency modes of the surface. One can understand
the appearance of these low-frequency states from an analysis of
linearized shallow shell theory, as expressed in the DMV equa-
tions of the surface.

Because the spectrum of soft modes dominates the fluctua-
tions and linear response of many-body systems, the existence
and distribution of sets of SLs on membranes of complex geom-
etry is the principal feature through which geometry controls the
statistical physics of such structures.

There is an ongoing discussion regarding whether RBC fluctu-
ations are strongly affected by nonequilibrium processes, specif-
ically ATP-consuming pumps (12, 13, 17, 20, 32, 33, 37–40). This
question is difficult to address experimentally because it is clear
that ATP depletion has a number of effects on the RBC mem-
brane, including large-scale geometric transitions such as the for-
mation of spherocytes. The agreement of our experiments with
an analysis of the predicted fluctuation spectrum in thermal equi-
librium suggests that the large-scale deformation modes, which
form the dominant contribution to the observed local height fluc-
tuations, can be accounted for without recourse to nonequilib-
rium noise. This does not imply that nonequilibrium processes
are irrelevant but suggests that they might couple strongly only
to the short-wavelength modes, to which our experiments are
less sensitive. Studying these nonequilibrium dynamics will be
challenging, because one is then required to account for hydro-
dynamic dissipation in the cytosol and the fluid surrounding the
cell. Such hydrodynamic interactions have been studied only for
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the simpler cases of flat (12) and spherical membranes (8, 33). In
addition, dissipation within the membrane (membrane viscoelas-
ticity) would have to be addressed.

The most direct implication of this work is that membrane
microrheology experiments must take into account the global
geometry of the membrane. Because local geometry controls
fluctuations, one may also imagine that there is selective pressure
on cell membrane morphology to control the spatial distribution
of its thermal (and nonthermal) motion. For example, intercellu-
lar junctions (e.g., synapses) may be engineered to suppress fluc-
tuations and thereby minimize the disjoining pressure at these
junctions.

Our results have direct implications on engineering membrane
geometry to localize or guide thermal undulations in both bio-
logical and synthetic systems. One synthetic system, graphene
sheets, is of particular interest. Here one finds a direct cou-

pling between geometry and their electronic properties (41, 42).
We anticipate that one may be able to modify the coupled
fluctuations of the surface and local electrochemical potential
through curvature in graphene. Finally, we observe that the
coupling of curvature to mechanics in the presence of thermal
fluctuations suggests that renormalization of area and bending
moduli due to nonlinear terms in equations of motion may be
affected by nontrivial curvature of the elastic reference state
of the membrane, and thus provide a way in which complex
membrane geometry at long length scales serves to create spa-
tial variations in the effective elastic moduli of the thermalized
membrane.
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