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Abstract

Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However,
tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures.
Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence
imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living
specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-
invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a
broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM). In addition to rendering
quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent
depth sectioning capabilities. However, like in all linear optical systems, SLIM’s resolution is limited by diffraction. Here we
present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with
resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference
Tomography (dSLIT), to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB
protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using
specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such
structures in a practical and non-invasive manner.
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Introduction

The field of cell biology emerged in the 17th century, when van

Leeuwenhoek used a light microscope to observe microscopic

objects including bacteria and human cells. However, since its

inception, cell microscopy has contended with two major issues:

lack of contrast, due to the thin and optically transparent nature of

cells, and diffraction limited resolution. The hard limit on

diffraction limited resolution was first calculated by Abbe in

1873 [1] to be approximately half the wavelength of the

illumination light. In order to improve contrast, the approach is

either to engineer exogenous contrast agents or to exploit the optics

of light-specimen interaction and reveal the endogenous contrast

provided by naturally occurring structures [2]. Currently, fluores-

cence microscopy is the most commonly used technique in cell

biology because it provides very high (theoretically infinite)

contrast and also allows for labeling specific structures [3]. The

key development that essentially combined the intrinsic and

exogenous contrast imaging fields is to genetically engineer the cell

to express green fluorescent protein (GFP) [4]. The advent of this

technology made it possible to genetically modify a cell such that it

naturally expresses GFP and binds it to prescribed cellular

structures, allowing the imaging of living cells.

Over the past two decades, fluorescence microscopy has also

enabled a number of super-resolution technologies, including

Stimulated Emission Depletion microscopy (STED) [5], Stochastic

Optical Reconstruction Microscopy (STORM) [6], (Fluorescence)

Photo-Activated Localization Microscopy, (f)PALM [7,8], Spatial-

ly Structured Illumination Microscopy (SSIM) [9], etc., collectively

referred to as far-field nanoscopy techniques (for a review, see Ref.

[10]). Impressively, these methods provide a transverse resolution

of 20–30 nm. Abbe’s resolution limit is overcome by taking

advantage of the nonlinear properties (eg. saturation, switching) of
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the engineered fluorophores. Since these methods require

scanning or many frames to reconstruct the final image, they are

often limited by severe tradeoffs between acquisition time and field

of view. More importantly, the nonlinear light-specimen interac-

tions require a high level of illumination intensity, which in turn

adds limitations due to photodamage and photobleaching.

For improving endogenous contrast imaging there are two widely

used methods, namely, Differential Interference Contrast (DIC or

Nomarski) and Phase Contrast [3]. Both of these techniques rely

on the realization by Abbe that image formation, and thus contrast

generation, is due to interference between scattered and unscat-

tered waves [1]. It was this concept that allowed Zernike to

develop phase contrast microscopy [11] which improves the

contrast of the image by introducing a quarter wavelength shift

between the light scattered by the specimen and the un-scattered

light. Phase contrast opened many new doors in live cell imaging;

however the information from a phase contrast image is qualitative

(intensity is not linearly proportional to phase) and, of course, the

resolution is still diffraction limited.

Since it has become increasingly clear that to truly understand

cellular function, it is necessary to image with high resolution in

three dimensions, many of the fluorescence techniques mentioned

above have also been adapted to work in 3D. Confocal microscopy

is the most commonly used technique for 3D imaging and provides

an axial resolution of approximately 500 nm [12]. 4Pi microscopy

yields an axial resolution of 90 nm [13], while, more recently, 3D-

Storm provides 50 – 60 nm resolution [14]. Another approach for

3D re-construction is deconvolution microscopy, in which the

blurring of the fluorescence image due to diffraction is treated as a

linear problem and reversed numerically. Note that, of course,

only the amplitude (intensity) of the field is measured in all these

methods.

Here we show that if instead of just measuring intensity, the

complex field (i.e., phase and amplitude) is measured, the 3D

reconstruction of the specimen structure can be obtained without

the need for exogenous contrast agents. Measuring the phase shift

that the specimen adds to the optical field at each point in the field

of view is known as quantitative phase imaging (QPI) [2]. This field has

been developing rapidly over the past decade and recently a

variety of methods have been developed [2,15,16,17,18,19]. These

advances in QPI methods have enabled three dimensional optical

tomography of transparent biological samples using Radon

transform based algorithms that were originally developed for

X-ray computed imaging [20,21,22]. QPI based projection

tomography has also been demonstrated on live cells with several

approaches demonstrating high resolution [23,24,25,26,27,28].

Recently, we have developed a new QPI modality known as

Spatial Light Interference Microscopy (SLIM) [29]. SLIM is a

broadband (white light) illumination technique that provides phase

sensitive measurements of thin transparent structures with

unprecedented sensitivity [30,31]. By combining the short-

coherence length of the broadband illumination with a high

numerical aperture objective, SLIM provides depth sectioning

capabilities [32]. Combining 3D SLIM images with a linear

forward model based on the first order Born approximation, it has

recently been shown that it is possible to perform label-free optical

tomography in a technique referred to as Spatial Light Interfer-

ence Tomography (SLIT) [32]. SLIT operates by measuring the

2D complex field while translating the focus position in increments

of less than half the depth of field. The measured 3D complex field

is then deconvolved using an experimentally measured three-

dimensional point spread function (PSF). This tomographic

capability has been demonstrated successfully on live neurons

and photonic crystal structures [32].

Despite the advantages provided by SLIM, its resolution is still

diffraction limited [33]. Such degradations are common to all

optical instruments and may be reduced to an extent through post-

processing methods such as deconvolution. Deconvolution works

by inverting the optical transfer function of the instrument and has

been widely used in intensity based techniques [34,35]. However,

such methods have not been investigated thoroughly on complex

fields measured by QPI instruments. Previous work [36] suggests

that the noise-amplification that is commonly encountered when

applying deconvolution to intensity images is not significant when

they are applied to complex field measurements. The high SNR

phase measurements obtained by SLIM provide a far more

accurate modeling of the convolution with the PSF of the optical

system in the complex fields, compared to the approximate

convolution model typically used for intensity based methods. So

far two novel deconvolution methods have been developed for

SLIM. First, a non-linear method [37] was developed that

estimates the unknown amplitude and phase through a combina-

tion of variable projection and quadratic regularization on the

phase. The second method, called dSLIM [38], is based on

modeling the image using sparsity principles. This type of

modeling is very effective in capturing the fine-scale structural

information that is lost due to the instruments optical transfer

function. It was shown that dSLIM provides a resolution increase

by a factor of 2.3, enabling super-resolution imaging with SLIM.

Here we present sparse deconvolution spatial light interference tomography

(dSLIT). This new method provides super-resolution in 3D and

allows us to study the fine scale sub-cellular structure present in E.

coli.

The idea that the sub-cellular environment of E. coli cells is

simply an amorphous mix has been proven to be incorrect, mostly

due to the availability of high-resolution fluorescence methods.

Numerous structures and distinct localizations of proteins have

been studied such as the MinCD complex [39,40], FtsZ [41,42,43]

and MreB [40]. Furthermore, localization and structure has also

been observed in the deposition of Lipopolysaccharides [44].

Interestingly many of these proteins have been found to lie in a

helical or coil formation. The nature of these helices and coils is

still under active investigation and many important questions

remain to be answered. However, studying these sub-cellular

structures using fluorescence requires specialized strains and

probes, which inhibit the observation of these structures in wild-

type strains in a non-invasive manner. In this work, we show that

dSLIT can be used to render high-resolution images of the three-

dimensional subcellular structure in E. coli cells. We find that

dSLIT can characterize the behavior and interactions of these

structures without using fluorescent labels.

Methods

E. coli culture and imaging
E. coli MG1655 cells are cultured overnight in LB (Luria Broth)

and then sub-cultured by 100x dilution into commercial M9CA

media with Thiamine (Teknova M8010) until they reach an

optical density (OD) of ,0.2. The cells are then concentrated to

an OD of ,0.4 and 2 ml of the culture is pipetted onto a glass

bottom dish (In Vitro Scientific D29-21-1-N) and covered by a

1 mm thick agar slab (1.5% Agarose, M9CA media). In order to

mitigate drying of the agar, 70 ml of H2O is carefully pipetted onto

the edge of the dish, ensuring that it never makes contact with the

sample. The dish is then covered with a circular coverslip to

reduce the effects of evaporation. During imaging the cells are kept

at 37uC by an incubator (XL S1 w/ CO2 kit, Zeiss) fitted on the

microscope (AxioObserver Z1, Zeiss). Images are acquired using
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63x/1.4 Oil phase contrast objective (Zeiss). For each field of view

the sample is scanned in z with a slice spacing of 0.280 mm with a

total of 15 slices. The exposure time for each image is 35 ms with

the lamp temperature at 3200K. The images are then processed to

retrieve the quantitative phase maps and then de-convolved as

described below.

Spatial Light Interference Microscopy
SLIM is a recently developed broadband QPI technique, which

combines the high contrast intensity images acquired by phase

contrast microscopy with quantitative information acquired

through holography [29,45]. This combination allows for imaging

using the intrinsic contrast of the sample and provides quantitative

optical path length information at each point in the image. A

schematic for the SLIM experimental setup is shown in Fig. 1.

SLIM is designed as an add-on module to a commercial phase

contrast microscope (AxioObserver Z1 in this case). In conven-

tional phase contrast microscopy, a thin metal annulus (phase ring)

located at the back focal plane of the objective lens is used to

introduce a p/2 phase shift between the light scattered by the

sample and the un-scattered light, thus coupling the phase

information into the intensity map that is observed by eye or

measured by a CCD. Although phase contrast revolutionized

optical microscopy and is a ubiquitous tool in cell biology, it does

not provide any quantitative information about the sample. In

SLIM the back focal plane of the objective is projected onto a

programmable liquid crystal spatial light modulator (SLM,

Boulder Nonlinear). The pattern on the SLM is modulated to

precisely match the phase ring of the objective and is then used to

impart a controllable phase shift between the scattered and un-

scattered light. By recording four intensity maps at phase shifts of

0, p/2, p and 3p/2 (Fig. 1 inset), it is possible to uniquely

determine the actual phase shift imparted by the sample relative to

its surroundings. This phase shift is linearly proportional to the

refractive index and the thickness of the sample. References

[29,45] present more details on the experimental setup. Prior to

any further processing or analysis the images are unwrapped to

correct any 2p phase ambiguities using Goldstein’s algorithm. This

is usually unnecessary for optically thin samples such as living cells

since the measured phase is consistently below 2p.

Due to the broadband (short coherence length of 1.2 mm) of the

illumination source SLIM does not suffer from reduced resolution

due to speckle which has plagued previous QPI methods and, due

to the common path geometry, it is extremely temporally sensitive.

SLIM’s spatial and temporal sensitivity to optical path length have

been measured to be 0.28 nm and 0.029 nm respectively. Another

unique feature of SLIM as a QPI technology is that it can be

overlaid with any other microscopy modality (e.g., epi-fluores-

cence) that is available commercially without any additional effort.

These capabilities have enabled applications ranging from

nanoscale topography and refractometry [31] to quantifying

intracellular transport [46,47], blood screening [48], cancer

detection [49] and cell growth [30,50].

When the short coherence length of the illumination is coupled

with the shallow depth of field provided by a high numerical

aperture objective, SLIM provides excellent depth sectioning

capabilities. In this work we combine the depth sectioning

capabilities of SLIM with a new 3D sparse deconvolution method

that allows for sub-diffraction limited resolution. Using this

method we are able to resolve sub-cellular structures in E. coli

which are invisible in SLIM. The deconvolution method is

described in detail below.

3D Complex Field Deconvolution via Sparsity
The following notation is used in this section: Bold letters h and

H denote vectors and matrices, respectively, with transposes hT

and HT. The spatial coordinates within an image are denoted by

(x, y, z), operator * denotes convolution, and i is equal to !21.

Finally, {?} is used to denote a set created with its argument.

As described in reference [32], under the first order Born

approximation, the 3D complex field distribution measured by

SLIM, U(r) = |U(r)|exp[iW(r)], can be expressed as a convolu-

tion between the susceptibility of the object, x(r)~n2(r){1 (where

n is the refractive index) and the point spread function of the

microscope, h(r). Essentially, the imaging system acts as a band

pass filter in the spatial frequency domain. Thus the measured

field can be written as �UU rð Þ~
ððð
V

x(r)h(r{r0)d3r0, where �UU is the

complex analytic signal associated with the real field. The PSF, h,

can be determined within the Born approximation by considering

the contribution of all the optical components in the system.

However, this calculation only provides the response of an

idealized system. Thus, we measured the PSF experimentally by

imaging microspheres with diameters less than the size of the

diffraction spot such that they essentially behave as point

scatterers. Therefore, for the purposes of the deconvolution

procedure presented here we may model the measured field, �UU , as

�UU rð Þ~x rð Þ � h(r)zf rð Þ ð1Þ

where j(r) is the additive signal independent noise. Generally,

both the magnitude and the phase of the image function are

affected by the PSF and the noise. However, the degradation in

the magnitude field is much smaller compared to the degradation

in the phase [36]. Moreover, most of the useful biological

information is contained in the phase image, and the magnitude

image is not of much interest. Therefore, it is reasonable to assume

that the magnitude of the image is constant and passes through the

instrument without degradation, i.e., DU(r)D~D �UU(r)D&const. This

assumption allows us to remove the magnitude component, and

write the deconvolution problem solely in terms of the phase W (r)

as

ŴW(r)~ argmin
W(r)

1

2s2
exp i �WW(r)½ �{h(r) � exp iW(r)½ �
�� ��2

zbR(W(r)) ð2Þ

where s2 is the noise variance, and R(?) is the regularization

functional used to enforce certain image properties during

deconvolution. Let us now denote by g(r) the field exp i�WW(r)½ �
acquired by the microscope, and by f(r) the unknown field

exp iW(r)½ � we are trying to recover. These fields can be

represented as vectors g and f, respectively, by stacking the

images as single columns with N pixels. Using this representation,

the image formation in (1) can be written in matrix-vector form as

g~Hfzj ð3Þ

where H is the convolution matrix corresponding to the PSF h(r).

Similarly, the deconvolution problem (2) can be expressed as

f̂f~ argmin
f

1

2s2
g-Hf2
�� ��zbR(f) ð4Þ

The formulation in (4) can be expressed within the Bayesian

Label Free Visualization of Sub-Cellular Structure
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framework by defining an observation model p(g|f, s 2) and an

image prior p(f) as follows

p gDf,s2
� �

! exp {
1

2s2
g-Hfk k2

2

� �
; ð5Þ

p fð Þ! exp {bR fð Þð Þ ð6Þ

The optimization problem in (4) then corresponds to finding the

maximum (the mode) of the joint distribution p( g|f, s2) = p( g|f,
s2) p(f), corresponding to a maximum a posteriori (MAP) estimation.

In the following, we will follow the Bayesian modeling formula-

tion.

Notice that in (5), the signal-independent noise n is modeled as

zero-mean, independent white Gaussian noise with variance s2.

The Gaussian modeling accurately describes the noise character-

istics in SLIM, since the signal-to-noise ratio (SNR) is very high (as

in fluorescence microscopy [34]). In addition, the noise variance

s2 can be estimated experimentally from a uniform area in the

acquired image.

As mentioned earlier, the functional R(?) (and thus the image

prior p(f)) is used to regularize the solution by enforcing certain

image characteristics. The inverse filter solution can be obtained

when no regularization is used (R = 0), but this approach generally

does not produce good results due to excessive amplification of

noise. The role of regularization is to impose desired character-

istics on the image estimates, and to suppress the noise and ringing

artifacts. The regularization parameter b controls the trade-off

between the data-fidelity and the strength of the regularization on

the estimates.

We now present an image model suitable for characterizing

both the specimen and the image instrument. Phase contrast

imaging provides high sensitivity at the sharp object boundaries,

but it is relatively insensitive to slow-variations in the background

region. Thus, phase images generally exhibit high contrast around

edges corresponding to e.g., cell boundaries, which in turn

provides accurate morphological information. In addition, in live

cell imaging, the specimen contains a fine structure and small-scale

dynamics.

Based on these characteristics, we propose to use the sparse

representation/reconstruction framework [51] that is suitable for

modeling phase images. Sparse representation and reconstruction

has recently been used in a number of imaging problems with

great success (see, e.g., [52,53]. It has also been shown [52,54] that

Figure 1. Experimental setup. The SLIM module is attached to a commercial phase contrast microscope (AxioObserver Z1, Zeiss). The first 4-f
system (lenses L1 and L2) expands the field of view to maintain the resolution of the microscope. The polarizer, P is used to align the polarization of
the field with the slow axis of the Spatial Light Modulator (SLM). Lens L3 projects the back focal plane of the objective, containing the phase ring,
onto the SLM which is used to impart phase shifts of 0, p/2, p and 3p/2 to the un-scattered light relative to the scattered light as shown in the inset.
Lens L4 then projects the image plane onto the CCD for measurement. From the 4 intensity measurements a quantitative phase map is reconstructed
as shown in the inset.
doi:10.1371/journal.pone.0039816.g001
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sparsity-based deconvolution is generally superior compared to

classical methods based on Wiener filtering and Tikhonov

regularization.

As demonstrated below, phase images can be accurately

represented sparsely in some transform domain, that is, when an

appropriate transform is applied to the images, most of the

transform coefficients become very small while only a few contain

most of the signal energy. This transform sparsity allows us to

capture the characteristics of spatial variations within the image.

In this work, we use a collection of L linear transforms Dk with

k = 1, ..., L, which are chosen as difference operators that capture

spatial variation at varying scales and orientations. Specifically, we

use the first and second order directional difference operators

{1 1½ �, {1 2 {1½ � ð5Þ

and 45u and 245u first-order derivative filters

{1 0

0 1

� �
,

0 {1

1 0

� �
ð6Þ

These 2D transforms are applied on all three planes in the

image, that is, on x2y, y2z and x2z planes, which in total give 12

transforms to capture the local spatial variations within the 3D

structure. More complicated transforms can also be incorporated

in the proposed framework in a straightforward manner. As an

illustration of the sparsity property of phase images, a SLIM phase

image and the output of applying difference operators (in x-, y-

and z- directions) are shown in Fig. 2, along with the

corresponding log-histograms. It is evident that most of the

structural information is accurately captured by the filtered

images. In addition, the cell structure concealed in the acquired

phase image is revealed in the filtered images (especially in the z-

direction). Notice also that compared to the SLIM image, the

sparsity level is significantly increased and the decrease in

resolution due to the PSF can clearly be observed in the filtered

images.

Using these transforms, the image model can be constructed to

exploit the sparsity in the transform coefficients. In this work, we

employ separate Gaussian priors on each transform coefficient as

p(fDfAkg)! exp {
1

2

XL

k~1

XN

i~1

aki D Dkfð Þi D22

 !
; ð7Þ

where aki are the weighting coefficients. The prior in (7) can be

expressed in a more compact matrix-vector form as

p(fDfAkg)! exp {
1

2

XL

k~1

Dkfð ÞTAk Dkfð Þ
 !

; ð8Þ

where Ak are diagonal matrices with aki,i = 1, . . .N in the

diagonal. The prior in (7) constitutes a sparse image prior, since

the transform coefficients (Dkf)i at pixel i are suppressed when the

corresponding weight aki assumes very large values.

The weights aki also represent the local spatial activity at each

location, and hence they are a measure of spatial variation in the

corresponding filters direction. Since we do not know a priori which

transform coefficients should be suppressed, they are estimated

simultaneously with the image. For their estimation, we assign

uniform priors as

p(aki)~const, Vk,i ð9Þ

It should be noted that this image modeling based on the

sparsity principle is used solely as an image prior, and it does not

necessarily result in image estimates that are sparse in the

Figure 2. Sparsity property of phase images. Images show the original phase image, and the output images obtained by applying first order
directional derivatives in the x, y, and z directions, as labeled, scale bar is 1 mm. The plot shows the corresponding log-histograms, the increase in
sparsity is clearly visible.
doi:10.1371/journal.pone.0039816.g002
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transform domains. This is because the image estimate is still

constrained with the acquired image g via the data constraints (the

first term in (4)). Real images are generally only approximately

sparse, with a few transform coefficients containing the majority of

the image energy while the remaining majority of the coefficients

have very small values. These small values may carry information

about the subtle image features. The modeling employed in this

work allows for adaptively estimating both the large and small

coefficients by estimating the parameters aki simultaneously with

the image.

Using the models for the noise in (5), the image in (8), and the

parameters in (9), the problem of estimating the unknown complex

image f and the weights aki is formulated within the MAP

framework as

f̂f,âaki~ argmin
f,aki

{ log p gDf,s2
� �

p(fDfAkg P
L

k~1
P
N

i~1
p(aki)

� �
; ð11Þ

~ argmin
f,aki

1

s2
g-Hfk k2

2z
XL

k~1

Dkfð ÞTAk Dkfð Þ ð12Þ

We solve this problem using an alternating iterative minimiza-

tion scheme where each unknown is estimated by keeping other

variables fixed. Notice that this problem is convex in f and aki, but

it is not jointly convex. For such problems, alternating minimi-

zation is shown to be an effective strategy, and it converges to a

local minimum of the objective function (see 55,56] for related

discussions).

The estimate of the complex image f is found by taking the

derivative of (12) and setting it equal to zero, which yields

f̂f~ HTHzs2
XL

k~1

DT
k AkDk

 !{1

HTg; ð13Þ

The parameters aki are estimated in a similar fashion by

minimizing (12), which gives the update

âaki~
1

D Dk f̂f
	 


D2i ze
; ð14Þ

where e is a small number (e.g., 1026) used to avoid the trivial

solution (âaki
{1~0) for numerical stability. It is evident from (14)

that the parameters aki are functions of the kth filter response at

pixel i of the image estimate f̂f. Thus, the strength of the enforced

sparsity is varied spatially within the image, and it is adaptively

estimated with each new image estimate. Through the use of the

transforms, this can also be seen as controlling the amount of

spatially-varying smoothness applied on the image estimate: When

a parameter aki assumes a large value, a higher amount of

smoothness is applied at pixel i (and vice versa). Low values of aki

will therefore be obtained in the areas with more edge structure,

preserving the image features.

In summary, the dSLIT deconvolution method estimates the

complex image f using (13) and the parameters aki using (14) in an

alternating fashion. Estimation of the image in (13) is performed

using the conjugate gradient (CG) method. The operations

involving the products with matrices H and Dk are done via

multiplications in the Fourier domain. As mentioned earlier, the

noise variance s2 is estimated from an approximately uniform

background region in the image.

The alternating minimization method employed here can be

shown to belong to the family of half-quadratic minimization

methods, for which certain theoretical convergence guarantees

exist [55,56]. The method is initialized with the acquired phase

image g without any pre-processing. Since the noise level in SLIM

is very low, this image is a good estimate of the sharp image. In

addition, the experimentally obtained point spread function (PSF)

h accurately represents the true PSF (see next section). Empirically

we found that the proposed deconvolution algorithm is very robust

and generally converges very rapidly within a few iterations.

Finally, note that since the deconvolution is applied directly in the

complex image domain, dSLIT does not alter the quantitative

imaging property of SLIM. In contrast, traditional deconvolution

Figure 3. Three dimensional point spread function. A) Compar-
ison of raw and deconvolved. PSF in the x-y plane; the deconvolution
process reduces the FWHM from 397 nm to 153 nm. B) Comparison of
raw and deconvolved PSF in the x–z plane; the deconvolution process
reduces the FWHM from 1218 nm to 357 nm. The dashed lines show
the data and the circular markers indicate the Gaussian fit used to
determine the FWHM.
doi:10.1371/journal.pone.0039816.g003
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methods applied on intensity images cannot preserve the

quantitative information.

Results

Deconvolution Results
To quantify the increase in resolution we applied dSLIT to the

experimentally measured point spread function (PSF). The

experimental PSF was acquired by using SLIM to measure a

sub-resolution (150 nm) diameter polystyrene bead, while scan-

ning the focus in z in increments of 200 nm. Fig. 3 shows the

results of the deconvolution, the FWHM were calculated by fitting

the experimental results with a Gaussian. In the x–y plane (Fig. 3A)

an increase in resolution of 2.5 times is achieved as the FWHM is

decreased from 397 nm to 153 nm. In the axial (z) direction the

FWHM is reduced from 1218 nm to 357 nm, corresponding to an

increase in resolution of 3.4 times that of SLIM (Fig. 3B).

3D Subcellular Structures in E. coli
E. coli cells were prepared and imaged as described above.

Fig. 4A shows a comparison of the SLIM and dSLIT images from

two cells at different z- positions. It is clear that the deconvolution

process reveals subcellular structure that is not visible in the SLIM

images. Fig. 4B shows the center slice of the 3D Fourier transform

of the SLIM and dSLIT data. As discussed above SLIM measures

the complex field at each z-position thus the intensity distribution

in far field or the scattering plane may be determined by

calculating its Fourier Transform, a technique known as Fourier

Transform Light Scattering (FTLS) 57]. Comparing the scattering

maps obtained from the SLIM and deconvolved data, it is clear

that there is more information available at higher scattering angles

or spatial frequencies corresponding to smaller structures. Thus

combining dSLIT with FTLS provides scattering information at

the sub-cellular level for single E. coli. To our knowledge the

scattering from single E. coli and their sub-cellular structures has

not been studied, probably due to the practical difficulties involved

in performing such measurements.

The dSLIT data reveal two sets of subcellular coil-like structures

that are visible in most of the cells that were analyzed; Fig. 5

summarizes the measurements made on these structures. In the x–

y plane a coiled structure is observed with an average period of

430 nm. Although the clarity and completeness of the structure

varies from cell to cell, the period of the structure was measured to

be invariant with the length of the cell. In the x–z plane another

coil-like structure is apparent, which was measured to have a

period of approximately half the length of the cell. This structure is

not readily visible in smaller or freshly divided cells. The

differences observed in x-y and x–z plane are likely due to the

difference in resolution of the method in the axial and lateral

planes. Such coil like structures have been observed in several

contexts in E. coli cells including the MreB cytoskeletal element,

MinCDE coiled arrays, outer membrane proteins and lipopoly-

saccharide [40,44]. Fluorescence measurements of these structures

indicate that they are most likely functionally distinct though little

is known about their temporal behavior. Although dSLIT reveals

these structures, there is no way to truly determine from the

current data what the structures truly are. For this, it is necessary

to conduct a study in which different subcellular structures are

fluorescently labeled. Once the identity of the structure is

determined it will then be possible to study it in a label free

manner using dSLIT. This will enable practical experiments of the

behavioral dynamics of these sub-cellular structures without the

need for specialized strains or probes.

Discussion

In this paper we presented dSLIT, a novel deconvolution

microscopy method that retrieves sub-diffraction limited resolution

information from the complex fields measured by SLIM. dSLIT

Figure 4. Comparison of raw and deconvolved data from two
cells. A) SLIM and dSLIT images at a variety of z-positions, with clearly
visible coiled structures. B) Scattering maps corresponding to the
images shown in A. The increase in resolution is clearly visible from the
extra information at higher angles in the dSLIT maps.
doi:10.1371/journal.pone.0039816.g004

Figure 5. Measurement of prominent structures found in 26
cells. In the x–y plane a coil structure is visible that has a period of
approximately 0.43 mm and does not vary with the length of the cell. In
the x-z plane another structure is visible that has a period of half the
cell-length.
doi:10.1371/journal.pone.0039816.g005
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operates on three key observations. First, the degradation of the

image by a microscopy PSF can be modeled as a linear process.

Second, due to the high SNR characteristic of SLIM, this PSF

may be measured experimentally. Third, the quantitative phase

measurements of thin biological specimen, like E. coli cells, can be

accurately modeled using sparsity principles. These properties of

the measurement system allow for a very effective deconvolution

process with a 2.5x resolution increase in the longitudinal

resolution and a 3.4x increase in axial resolution, as shown in

Fig. 3. This increase in resolution allowed us to measure sub-

cellular structure in E. coli that was previously not visible in the

SLIM data. Using dSLIT we found two consistent coil-like

subcellular structures in E. coli, one that retains a constant period

as the cell grows and one with a period of approximately half the

length of the cell. Although several such structures have been

previously identified, little is known about their function and

behavior due to the practical difficulties involved in imaging them.

The results presented here indicate that dSLIT can be used to

characterize and study such sub-cellular structure in a practical

and non-invasive manner, opening the door for a more in depth

understanding of the biology.
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