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We present a method for phase retrieval in off-axis interferometric systems. By numerically calculating the trans-
verse 1st and 2nd order derivatives of the interferogram, we show that one can directly retrieve the quantitative
phase image, without the need for Fourier or Hilbert transformations. Because of this, the method is significantly
faster than the current approaches. We illustrate our method using biological specimen data from three different

off-axis quantitative phase imaging techniques.
OCIS codes: 100.5070, 100.2650, 170.0180.

Quantitative phase imaging (QPI) is a rapidly emerging
area of study in biomedicine as it provides label-free ac-
cess to structure and dynamics, quantitatively and with
nanoscale sensitivity [1]. Temporal phase shifting based
QPI techniques require three or more images for phase ex-
traction and hence are difficult to implement in real time
[1,2]. By contrast, off-axis based QPI techniques allow for
single shot measurements and, thus, fast acquisition rates
[3,4]. Integral operators (Fourier and Hilbert transforms)
are established methods for phase reconstruction in
off-axis QPI [3-5]. However, because they are integral
transformations, these operations are computationally
demanding, which makes it difficult to achieve real-time
phase extraction. This challenge has been addressed re-
cently by parallelizing the numerical reconstruction [6].

Very recently, spatial phase shifting (SPS) has been
used for phase extraction in diffraction phase micro-
scopy (DPM) [7]. Because it uses a local (differential),
rather than integral operator, SPS is faster than Fourier
and Hilbert transforms for raw phase calculation. How-
ever, in SPS the phase shift per pixel needs to be close to
27 /3 rad or the carrier fringe period needs to be 3 pixels,
such that the condition of least noise is satisfied [8]. This
condition adds constraints to the QPI system design.

In this Letter, we present a derivative method for
phase reconstructions, which can be applied quite gener-
ally to any off-axis interferogram. Our local method relies
on the first- and second-order derivatives of the recorded
image and, thus, is 4 times faster than the Hilbert trans-
form (HT) technique and 10 times faster than Fourier
transform (FT) technique for phase extraction. Further,
our approach works with fringes sampled by an arbitrary
pixel number, N, as long as N > 3 to satisfy the Nyquist
condition for an interferogram (see, e.g., p. 308 in [9]).

In off-axis QPI, the interference pattern can be written
as [1]
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where I, is the background intensity,y is the modulation
factor, ¢ is the phase delay due to the specimen, and k is
the spatial frequency of the carrier fringes. The latter is
determined by the tilt angle, 6, between the sample and
reference beams, that is,

I(@,y) = I (x.y) + y(x.y) cos[p(x,y) + k],
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k =2z sin /4, 2
where /A is the wavelength. Typically, the phase is ob-
tained via a spatial Hilbert transform, which provides
the complex analytic signal associated with the real inter-
ferogram [3-5]. Here we show that, for phase objects, ¢
can be obtained more directly via transverse derivatives
of the interferogram. Thus, the first order derivative of
Eq. (1) with respect to x can be written as
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For most transparent specimens of interest, i.e.,
phase objects, we can make the following helpful
approximations:
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where we consider that the background intensity, I, and
modulation factor, y, are constant over the interferogram
and the phase, ¢, is a slowly varying function. The first
two conditions are clearly fulfilled for phase objects,
where no intensity modulation is observed. The third as-
sumption, d¢/dx < k, applies because we always adjust
the fringe period to be smaller than the diffraction spot of
the imaging system, such that the optical resolution is not
degraded by sampling [3]. Under these circumstances,
over a diffraction spot (or central portion of the point
spread function), the phase of the field, ¢(x,y), varies
nsignificantly, but the phase of the fringe, kx, changes
by at least 27. Therefore, from Eq. (3) we have
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Similarly, the derivative of Eq. (5) with respect to x
gives the second-order derivative,
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Using Egs. (5) and (6), we obtain the phase directly as
the argument of the complex function I” + kI’, with

i = /-1,

¢(x,y) = arg(I” + ikl') - k. @)

Clearly, this derivative method, based on local opera-
tions, is faster than the traditional integral operations.
The spatial frequency, k, has fixed value over time and
throughout the field of view and is determined by the per-
iod of the grating. Thus one needs to measure it only once
for a particular experimental system. One of the best op-
tions to measure k is by detecting the peak position of
one of the first orders in the Fourier transform of the
interferogram.

For comparing our result with that in [7], we can re-
write Eq. (7) as:

¢(x,y) = tan™! [l;—l,.,,] - kx, €))

where the tan™! is calculated over 4 quadrants. Equa-
tion (2) in [7] (also Eq. (5) in [8]) can be rewritten using
spatial separation between pixels,ox as

¢(x,y) = tan™!| tan kow I% + I,l - ke, ©))
2 ) 1,-1,

where I;, 1 = 1, 2 are the spatially phase shifted intensi-
ties, ox =1, k is the phase shift between adjacent
pixels, and

L -Iz3=-I3-1I,+1,-1)) = -(I; + I), (10)

- 42, -I3=-(I3-1)+Ux-1)) =-(I,-1}). (11)

In Egs. (10,11), I, -I; =1y =0I;/ox and I3-1I, =
I, = dI,/0x. Note that in derivative method (DM)
[Eq. (8)] we calculate locally, using consecutive pixels,
while in SPS [Eq. (9)], the calculations are spread over
3 pixels. The noise associated with the SPS approach has
been studied by Servin and Cuevas and it was found that
kéx should be equal to 27/3 rad for best noise rejection
and 3 x 3 averaging is necessary in order to remove a
large quantity of noise even with kéx = 2z /3 rad [8]. By
contrast, our method works equally well with any values
of k.

In order to demonstrate our algorithm, we applied the
derivative method to three distinct diffraction grating
based off-axis QPI techniques: diffraction phase micro-
scopy (DPM) [4], white light DPM (wDPM) [10], and
instantaneous spatial light interference microscopy
(iSLIM) [11]. DPM is a common path, off-axis QPI method
[4] where the zero and first order diffraction orders from a
grating placed at the image plane of a microscope inter-
fere at some angle to produce stable carrier fringes. We
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Fig. 1. (Color online) Derivative method for phase calculation:
(a) original DPM image, (b) 1st order derivative of (a) w.r.t. x,
(c) 2nd order derivative of (a) w.r.t. x, (d) the reconstructed
unwrapped phase, (e) 3 x3 average filtered phase of (d),
(f) phase obtained by HT; the color bars show the phase in rad.

illustrate the phase reconstruction procedure in Fig. 1.
The interferogram (512 pixels x 512 pixels) associated
with red blood cell (RBC) specimen [Fig. 1(a)] has a spa-
tial frequency, k = 1.8285 rad/pixel. The numerically cal-
culated first and second derivatives of the interferogram
are shown in Figs. 1(b) and 1(c), respectively. Since we
know k, we can calculate the phase from the two
derivative images and remove the tilt due to the carrier
fringes [last term in Eq. (7)]. In calculating the derivatives
and the phase, we used MATLAB, but, of course, our meth-
od can be implemented with any computing platform.

Figure 1(d) shows the reconstructed phase after 2D
phase unwrapping. The color bar indicates the phase
in radians. Some pixel noise is visible because the deri-
vative calculations act as high-pass filters and may intro-
duce high-frequency noise in the image. Fortunately, our
images are oversampled to preserve optical resolution
(as explained earlier) and it is expected that below the
optical resolution, noise is dominant. Therefore, filtering
is permissible over an area up to the diffraction spot size,
i.e. at least 3 pixels. Figure 1(e) shows the filtered version
of Fig. 1(d), where a 3 pixel x 3 pixel window average
was used. Further, we have compared this result given
by our DM with that given by the Hilbert transform [3]
[Fig. 1(f)] and obtained excellent agreement. Standard
deviation of the difference of phases between Fig. 1(e)
and Fig. 1(f) is only 0.026 rad, which represents 0.56%
of the maximum phase value. We compared the execu-
tion time for the phase calculation in both the cases:
the Hilbert transform method takes 89.9 ms whereas
our DM takes only 21.7 ms which is more than 4x faster.
The phase extraction was performed on a desktop com-
puter (Intel Core i7-960 CPU, 3.20 GHz) in the MATLAB
environment.

To demonstrate the accuracy of our method, we have
imaged a 2.9 £ 0.14 ym diameter polystyrene bead im-
mersed in immersion oil (Zeiss) using wDPM which is an
off-axis common path QPI that uses plane wave white
light illumination [10]. Figure 2(a) shows such a phase im-
age; the color bar shows the height in ym. The measured
height is 2.95 ym at 550 nm (center wavelength of the
source), which agrees very well with the given value. In
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Fig. 2. (Color online) Quantitative phase imaging with wDPM
setup: (a) Microbead immersed in oil; the color bar shows the
height in ym, (b) Live Hela cells; the color bars show the phase
in rad. The arrows indicate nucleoli.

wDPM the spatial frequency, k = 1.0267 rad/pixel.
Further, our technique is used to measure the phase of
awDPM image of HeLa cells (ATCC, CCL-2), ahuman cer-
vical epithelial cell line, 24 h after the cells were plated
onto a glass bottom dish. Figure 2(b) shows the QPI image
of HeLa cells where arrows point to the nucleoli; the color
bar represents the phase in radians. The arrows indicate
nucleoli.

Next we have used our method to evaluate the phase of
iSLIM image. iSLIM is also an off-axis common path QPI
methods that uses white light phase contrast illumination
[11]. In the iSLIM setup, k& = 0.801 rad/pixel, which is
much smaller than 2z/3. We compared our reconstruc-
tion method with the SPS method [7], as follows. We im-
aged live red blood cells (RBCs) diluted with Coulter LH
series diluent (Beckman Coulter) to a concentration of
0.2% whole blood in solution. Figures 3(a) and 3(b) show
the QPI images of RBC obtained with DM and SPS meth-
ods, respectively without any filtering; the color bar re-
presents the phase in radians. The higher range in the
color bar of Fig. 3(b) is due to noise spikes. Figure 3
(c) shows profiles across a RBC in Figs. 3(a) and 3(b)
(dashed lines). As can be seen, the line profile for SPS
is much noisier than DM. Figure 3(d) shows profiles
across the same dashed lines in Figs. 3(a) and 3(b) after
filtering the phase images through a 3 x 3 window aver-
age filter. The profile for SPS is noisier even after the fil-
tering. DM gives less noisy phase compared to SPS at any
k and it is expected to give approximately the same per-
formance when k is close to 2z/3 [8]. Note that the ex-
ecution times for DM and SPM are approximately
the same.

It is noteworthy to mention that the work presented by
Joenathan and Khorana also uses fringe derivatives for
phase calculation [12]; however, it requires two interfero-
metric fringe patterns instead of the one required in our
case. Thus, our method avoids the need for the temporal
phase shifting used in [12]. Further, fringes in our work
always orient along the x direction; thus the possible gen-
eration of artifacts like Moire fringes is avoided. The ef-
fect of shearing operations in differentiation is negligible
as only one pixel is needed to be sheared for differentia-
tion, compared to 24 pixels in [12].

In summary, we presented a DM for phase retrieval in
off-axis quantitative phase imaging. By numerically cal-
culating the 1st and 2nd order derivatives of the interfer-
ogram, one can calculate the quantitative phase without
the use of integral transformations. We anticipate that
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Fig. 3. (Color online) Comparison between DM and SPS.
Quantitative phase image of red blood cells processed from
an interferogram obtained by iSLIM without filtering using:
(a) the DM method, (b) SPS method; the color bars show
the phase in rad; (c) Profile of the dashed lines in (a) and
(b); (d) Profile of the same dashed lines after filtering the phase
images using 3 x 3 average filtering.

this approach will be useful in achieving real-time QPI
using various off-axis methods including digital hologra-
phy [13-15]. Importantly, all the derivative calculations
can be parallelized and performed extremely fast.
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