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Abstract Quantitative phase imaging (QPI), a method that pre-
cisely recovers the wavefront of an electromagnetic field scat-
tered by a transparent, weakly scattering object, is a rapidly
growing field of study. By solving the inverse scattering prob-
lem, the structure of the scattering object can be reconstructed
from QPI data. In the past decade, 3D optical tomographic re-
construction methods based on QPI techniques to solve inverse
scattering problems have made significant progress. In this re-
view, we highlight a number of these advances and develop-
ments. In particular, we cover in depth Fourier transform light
scattering (FTLS), optical diffraction tomography (ODT), and
white-light diffraction tomography (WDT).
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1. Introduction

Light scattering is a basic interaction between an electro-
magnetic field and an inhomogeneous object, which results
in modifications in the wavefront and field amplitude. If this
interaction happens without modifications in the frequency,
the scattering is said to be elastic. The scattered light car-
ries the internal structural information of the object in its
amplitude and phase. When the scattering through the ob-
ject is weak, e.g., under the first-order Born approximation,
the problem can be described as a linear process and, as
a result, it is feasible to infer uniquely the object structure
from the measured scattered field. This represents an in-
verse scattering problem and is fundamental to performing
tomographic imaging of transparent structures such as live
and unstained cells. An unstained live cell has features that
are not only transparent, but also below the resolution of
light microscopy. Moreover, the cell’s internal structures,
e.g., cytoskeleton, organelles, vesicles, are highly dynamic
and, thus, difficult to study using labels. Therefore, recon-
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structing the three-dimensional (3D) structure of live, un-
labelled samples has long been desired, which motivated
the development of new tomographic imaging techniques
using inverse scattering solutions.

Traditionally, inverse scattering methods are based on
far-zone measurements, i.e., under the Fraunhofer approx-
imation. For two-dimensional (2D) objects, such as aper-
tures, diffraction gratings, etc., the far-zone measurement is
directly related to the structure through a 2D Fourier trans-
formation. However, in 3D inverse scattering, the prob-
lem becomes more complicated. There have been many
attempts to solve 3D inverse scattering problems using far-
field measurements. The first breakthrough was made by
Bragg with X-ray diffraction [1], which is a method that
has been widely used for determining crystal and crystal-
ized protein structures [2,3]. However, it is well-known that
in X-ray diffraction it is difficult to achieve experimental
access to the phase of the field, i.e., the reconstruction suf-
fers from non-uniqueness due to what became known as
“the phase problem” [4]. In order to ameliorate the phase
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problem, prior knowledge about the structure of interest is
used together with iterative methods, such that the recon-
struction converges to an unambiguous solution.

Inspired by X-ray crystallography, in 1969, Wolf devel-
oped the theoretical formulation for tomographic imaging
of phase objects, using monochromatic light to solve the
inverse scattering problem. This method is known today as
optical diffraction tomography (ODT) [5]. Recent reports
successfully showed experimental demonstrations of ODT
theory for 3D reconstruction of transparent objects. These
experiments were commonly done by scanning the incident
angle of the source beam by rotating either the source itself
or the object, and measuring the scattering patterns in the
far-zone [6–10]. This approach is based on laser illumina-
tion and, thus, suffers from laser speckle, which degrades
the image contrast and resolution [11].

In 1991, low-coherence interferometry (LCI) was used
for tissue imaging and the resulting method became optical
coherence tomography (OCT) [13–15]. OCT images the
sample at a depth position specified by the reference of the
interferometer, with an axial resolution determined by the
coherence length of the source rather than the numerical
aperture of the imaging optics [16]. Usually OCT systems
employ a low numerical aperture (NA) objective to maxi-
mize the imaging depth, and, thus, are limited to poor lateral
resolution. The depth information is obtained by adjusting
the delay of the reference field, while the transverse infor-
mation is obtained by raster scanning. Importantly, the low
temporal coherence in OCT is used to remove the scattered
light outside the slice of interest, rather than to solve the
inverse scattering problem. Common OCT systems per-
form intensity-based measurements of the backscattered
light from various depths to gain information about the 3D
object structure. Much later, in 2006, Ralston et al. de-
veloped a computational technique, called interferometric
synthetic aperture microscopy (ISAM), to solve the inverse
scattering problem by using the amplitude and phase of the
OCT data. ISAM improves the lateral resolution and main-
tains it across the whole OCT imaging volume [14,17,18].
The inverse scattering problem was formulated based on
diffraction tomography with the Green function approach.

Quantitative phase imaging (QPI) is an emerging field
dedicated to providing a solution for the phase problem
[19]. QPI combines holography proposed by Gabor in 1948
[20] and phase sensitive microscopy proposed by Zernike
[21,22]. Instead of measuring the intensity of the total field,
holography measures the interference between the scattered
field and a reference field to record phase information. Fur-
ther modifications to the reference field yields quantitative
information about this phase difference at each point in
space, and therefore, allows QPI techniques to measure the
complex scattered field quantitatively. Moreover, recent ad-
vances in light sources and detectors have greatly benefitted
imaging by providing sufficient pixel counts, high acquisi-
tion speed, and enough light sensitivity to acquire images
needed for QPI applications. These advances have brought
significant progress in solving the inverse problem in both
2D and 3D, by allowing one to work with the complex
field itself rather than just the intensity [12,14,23–30]. This

ability to precisely infer the 2D and 3D structures of a
sample allowed QPI to be applied for many areas of stud-
ies, including biomedical imaging, material sciences, and
more. However, in this review, we focus on solving inverse
scattering problems of biomedical relevance.

In the early 2000’s, A. Wax et al. pioneered the use
of 2D inverse scattering theory with angle-resolved low-
coherence interferometry (aLCI) to quantitatively charac-
terize turbid structures [31–33]. In 2005, Alexandrov et al.
used digital Fourier holography to measure the angular light
scattering spectrum and reveal the object structure [34]. One
of the earlier applications of QPI to inverse scattering prob-
lems was proposed by Ding et al. in 2008 [28]. This method,
called Fourier transform light scattering (FTLS), can be
thought of as the spatial equivalent of Fourier transform in-
frared (FTIR) spectroscopy. Analogous to FTIR, in which
the spectroscopic information is obtained via a time-domain
measurement followed by a numerical Fourier transforma-
tion, in FTLS the angular scattering (spatial frequency)
information is obtained via a spatial-domain complex field
measurement followed by a numerical Fourier transforma-
tion. Thus, measuring the quantitative phase image provides
an ultrasensitive method for studying inhomogeneous and
dynamic media [28,35]. Initially, this technique was based
on a QPI technique called diffraction phase microscopy
(DPM), which measures the complex scattered field in a
single shot [36]. Later, FTLS was expanded to other QPI
methods, including white-light-based methods [37]. Since
the technique is based on imaging instead of scattering mea-
surements, all the scattering angles, or spatial frequencies,
associated with the sample are measured simultaneously at
each point of the image, which increases the sensitivity of
the technique by orders of magnitude. Although this tech-
nique is confined to 2D measurements, it establishes the
relation between quantitative phase imaging and light scat-
tering [38,39]. Building on this principle, a new method, re-
ferred to as dispersion-relation phase spectroscopy (DPS),
was developed for studying dynamic transport of intracel-
lular mass [40, 41].

3D inverse scattering based on optical diffraction to-
mography for biological imaging applications has been ac-
tively studied in the past decade. In early studies, filtered
back-projecton methods, based on angle-scanning laser
QPI, were used for 3D refractive index mapping [8,10,42].
Later on, Wolf’s optical diffraction theory was applied to
improve the resolution and the quality of 3D reconstruction
[9,43]. In 2013, Y. Cotte et al. used a synthetic aperture laser
QPI approach combined with the complex deconvolution
of the system point spread function to achieve high reso-
lution tomographic imaging [12]. Very recently, Kim et al.
developed a new method of solving inverse scattering in
the wavevector space and demonstrated the reconstruction
of transparent objects in 3D [29]. This technique, referred
to as white-light diffraction tomography (WDT), extends
Wolf’s diffraction tomography to broadband illumination
and provides an accurate solution, without using the far-
field approximation. Combined with a QPI technique called
spatial light interference microscopy (SLIM) [26,44], WDT
successfully reconstructed unlabelled live cells in 3D with
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sub-micron resolution in all three directions. The wavevec-
tor space method used in WDT for solving the inverse
scattering problems can also be used to solve many other
problems, including inverse scattering using OCT [45].

As a result of this tremendous progress, we are at an
exciting time in the Biomedical Optics field, where quan-
titative methods, typically reserved for material metrology,
are suitable for studying live, unstained cells. Eight decades
after Zernike’s breakthrough that allowed us to “see” the in-
ternal structure of a completely transparent cell [21,22], we
are now able to quantify the cell’s size and 3D shape, how
much dry mass it contains, how much light the cell scat-
ters along particular directions, or quantify the diffusion
coefficient of its internal structures.

In the following sections, we describe in more detail
various approaches that use QPI to solve inverse scattering
problems. The following sections are organized as follows.
First, we review the basic principles of QPI (Section 2) and
2D inverse scattering methods including FTLS (Section
3). In Section 4 we review 3D inverse scattering methods
and present representative results of live cell tomography.
Finally, in Section 5 we summarize the results and project
some exciting outcomes likely to occur in the coming years.

2. Quantitative phase imaging (QPI)

Since the 1990s, charge-coupled device (CCD) and comple-
mentary metal-oxide semiconductor (CMOS) based image
sensors and personal computer technologies have made sig-
nificant advancements, enabling quantitative phase imag-
ing (QPI) to develop at a fast pace [19, 46]. The megapixel
resolutions of detectors yield sufficient details to be cap-
tured during imaging of nano-scale cellular structures.
Moreover, the acquisition speed of these detectors can
surpass one kHz, even when the full frame is used, thus
allowing for the imaging of fast cellular dynamics. QPI,
based on interferometric measurements, provides quanti-
tative amplitude and phase information associated with
the electromagnetic field. Quantifying the optical phase
shifts associated with cells and tissues provides a new,
valuable dimension to optical microscopy. Over the past
decade, QPI has been recognized as an emerging area
of research, as it enables previously inaccessible biolog-
ical applications: cell dynamics [36, 47–53], cell growth
[54–58], blood testing [51, 53, 56, 59–72], molecular de-
tection [73] cell cytoplasm flow [74], heart cell beating
[75], neuron imaging [76, 77], monitoring electric activity
in nerves [78,79], cell and tissue refractometry [76,80,81],
cell rheology [82,83] and, more recently, tomographic cell
imaging [8, 10, 12, 27, 29, 42, 84]. Reference [85] reviews
several major QPI technology breakthroughs in 2013.

Developments in QPI have brought significant progress
in phase reconstruction, with phase sensitivity down to 1
mrad, corresponding to 1 nm thickness change, or con-
versely 10−4 refractive index change, in transparent biolog-
ical structures (assuming a refractive index contrast of 0.03)
[19, 40]. Importantly, QPI is a label-free method, without

fluorescence markers or dyes, which keeps the specimen
viable for extended periods of time. Therefore, it is ideal
for biomedical imaging, where the live cells are sensitive
to subtle perturbations in the environment [86–91]. Re-
cently, various applications of QPI have been applied for
non-invasive studies of cell dynamics, blood testing, cell
growth, tissue diagnosis, and 3D cell imaging. Due to its
non-destructive and high throughput nature, QPI has also
been applied to material characterization [92–101].

Most QPI techniques are based on two-beam interfer-
ometry, in which a reference beam and a signal beam form
an interference signal. In the general case of both spatial
and temporal modulation, the measured intensity on the
camera detector is

I (x, y; τ ) = Isig(x, y) + Ire f (x, y) + 2 |"12 (x, y; τ )|

× cos
[
βx + ωτ − φsig (x, y)

]
, (2.1)

where Isig(x, y) and Ire f (x, y) are the intensities of the sig-
nal and the reference beam, respectively, "12(x, y; τ ) is the
cross-correlation between the reference and signal field, β
is the spatial frequency shift between the two beams, ω is
the mean temporal frequency of the two fields, τ is the tem-
poral delay, and φsig(x, y) is the phase of the signal beam,
i.e., the quantity of interest. There are two different interfer-
ometric techniques typically used to retrieve the signal field
phase, φsig(x, y): off-axis interferometry and phase-shifting
interferometry.

2.1. Off-axis QPI methods

In off-axis interferometry, the delay between the fields is
minimized (τ = 0) and the interference is recorded spa-
tially. The angle between the two beams is non-zero, which
creates a spatial frequency shift, β. Therefore, a fringe pat-
tern is created with a period determined by the carrier fre-
quency, β,

I (x, y; 0) = Isig(x, y) + Ire f (x, y) + 2 |"12 (x, y; 0)|

× cos
[
βx + φre f − φsig (x, y)

]
. (2.2)

Since the propagation of the two interference beams
can be precisely described by diffraction theory, it allows
for numerical reconstruction of the complex image field. In
experiments, this type of interferometer is often realized in
a Michelson or Mach-Zehnder interferometer, followed by
a Hilbert transform of the acquired interferogram to recover
the quantitative phase information ([59, 72, 86–102]).

In 1967, Goodman and Lawrence first demonstrated
the numerical reconstruction of the complex field from a
digitally recorded hologram. This approach has developed
into a field of its own, known as digital holography [103].
Later on, Takeda et al. proposed a fast Fourier transform
method to analyze the fringe pattern and reconstruct the
sample topography [102]. As large CCD detector arrays
became available in the 1990s, Schnars et al. demonstrated
the first lens-less off-axis digital holography system with
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improved image quality [87]. In the following years, digital
holography was adapted in a microscopy system by several
groups and became a new microscopic technique called dig-
ital holographic microscopy (DHM) [89, 104–107]. DHM
is a scattering plane measurement, which requires deconvo-
lution using the Fresnel propagation kernel to retrieve the
complex field at the image plane. However, the optimum
position of the detector to avoid spatial sampling and phase
discontinuity problems in live cell imaging is at the im-
age plane. In 2005, an off-axis QPI method called Hilbert
phase microscopy (HPM) was proposed, in which the CCD
camera is placed exactly at the image plane. HPM uses
the complex analytic signal obtained from the measured
intensity (which is real-valued) to retrieve the phase of a
transparent object. Therefore, HPM is a single-shot tech-
nique, suitable for studying cell dynamics and morphology
[59, 108, 109].

2.2. Phase shifting QPI methods

In phase-shifting interferometry, the angle between the ref-
erence and the scattered beam is zero (β = 0), while the
reference field phase φre f (τ ) is modulated several times in
order to obtain quantitative phase images. Therefore, Eq.
(2.1) becomes,

I (x, y; τ ) = Isig(x, y) + Ire f (x, y) + 2 |"12 (x, y; τ )|

cos
[
φre f (τ ) − φsig (x, y)

]
. (2.3)

The reference phase φre f (τ ) = ωτ can be shifted by
either changing the delay τ or the frequency ω of the light
beam. By combining four interferograms taken at φre f (τ ) =
0, π/2, π, 3π/2, the phase of the sample field is uniquely
determined as,

φsig(x, y) = arg[I (x, y; 0) − I (x, y; π ), I (x, y; 3π/2)

− I (x, y; π/2)]. (2.4)

In 1993, the group led by Graham Dunn at King’s
College, London, developed a technique called digitally
recorded interference microscopy with automatic phase-
shifting (DRIMAPS) based on a Mach-Zehnder interfer-
ometer setting [48, 110, 111]. In this technique, the phase
shift is added to the reference by horizontally sliding an
optical wedge. Another experimental setup was developed
in 1998 at Northeastern University. This technique, called
optical quadrature microscopy (OQM), is based on phase
shifts generated by polarization waveplates. OQM was ini-
tially used to determine the sign of the Doppler velocity
[112,113], and later on applied to cell counting in embryos
[114, 115]. More recently, several groups have developed
QPI methods that simultaneously generate four phase shift
images, which increased the acquisition speed and have
enabled imaging of fast dynamics [116–119].

2.3. Common-path QPI methods

In 2004, a common-path phase-shifting QPI technique
called Fourier phase microscopy (FPM) was developed
[60, 120]. FPM uses a quasi-monochromatic source and
phase-shifting interferometry to measure quantitatively the
phase of transparent biological structures. In the first FPM
demonstration, a super-luminescent diode (SLD) was used
as illumination [60]. To ensure full spatial coherence on the
CCD camera, the SLD is spatially filtered through a single
mode fiber. A Fourier lens is used to separate the reference
(transmitted) and signal (scattered) fields. The reference
field is focused onto a spatial light modulator (SLM) where
four phase shifts are created sequentially. The phase con-
trast images are captured at the image plane and used to
reconstruct the phase map using Eq. (2.4). The phase shift-
ing procedure allows for measuring the phase difference
between the scattered and transmitted field. It should be
pointed out that this phase difference, 'φ(x, y), is quite
different from the phase associated with the image field,
which is the coherent sum of the scattered and transmitted
fields. The phase of the image field is calculated as,

φsig(x, y) = arg {1 + α(x, y)cos ['φ(x, y)] ,

α(x, y) sin ['φ(x, y)]} , (2.5)

where α(x, y) = |Esig(x, y)/Eref (x, y)| and Esig(x, y) and
Eref (x, y) are the electric fields of the signal and reference
beams. FPM has high temporal stability, without the need
for active stabilization. FPM has been used for measuring
nanoscale membrane fluctuations and cell growth [55, 71].

In 2006, a new type of common-path off-axis transmis-
sion QPI method was developed called, diffraction phase
microscopy (DPM) [36]. The first DPM was built using
a laser illumination filtered through a single mode fiber
to ensure full spatial coherence [28]. Using the laser as
a light source, an image is formed through a commercial
microscope at the image plane, where the DPM module is
attached. The DPM module includes a 4f lens system that
grants access to the Fourier plane of the field. A diffrac-
tion grating is placed at the microscope image plane to
generate multiple diffraction orders. These diffraction or-
ders are spatially separated in the Fourier plane, where a
physical pinhole filter or an SLM is located. This filter low-
passes the 0th order diffracted beam to generate a reference
beam and passes the 1st order diffracted beam without fil-
tering to carry the signal from the sample. These two beams
are then combined at the image plane through the second
Fourier lens to form an interferogram at the detector. Since
these two beams are traveling in a common-path geome-
try, any noise induced by vibration of the optical elements
is minimized, enabling optical path length sensitivity be-
low 1 nm. Furthermore, DPM is a single-shot technique
with the acquisition speed limited only by the acquisi-
tion rate of the camera. Therefore, this system is suitable
for studying nanometer scale fluctuations in a highly dy-
namic sample. As an example, red blood cell membrane dy-
namics and other mechanical properties have been studied
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using DPM [36, 40, 51, 121]. More recently, DPM has
been extended to white-light illumination [122] and imag-
ing samples in a reflection geometry [93–97]. Over the
past several years, many other common-path QPI meth-
ods have also been proposed. For example, V. Mico et al.
have demonstrated common-path QPI by spatial multiplex-
ing the fields illuminated by three different illumination
angles [123, 124]. Quadri-wave lateral shearing interfer-
ometry (QWLSI) [125] and spiral phase contrast [126] are
also proposed as alternative common-path QPI methods.

Interestingly, over the past few years, QPI methods
based on numerical computation have been widely ex-
plored. Phase and amplitude imaging based on the transport
of intensity equation (TIE) is a computational QPI method
based on the paraxial wave propagation. [127–130]. TIE
involves measurements of light (coherent or partially co-
herent) intensity at two focal positions without using an
interferometer and calculates the intensity axial derivative
to obtain quantitative phase images. To reduce the noise
and improve phase accuracy, Waller et al. proposed using
higher-order derivatives that use three or more focal plane
positions [128]. Fourier ptychographic microscopy [131] is
a synthetic aperture technique in which the complex im-
age field is reconstructed via individual spatial frequency
components, measured sequentially. The scattering inten-
sity corresponding to each k-vector is collected via a low
NA objective and both the amplitude and phase information
of the field are recovered by using an iterative computation
method. This method can achieve a large field of view with
moderate lateral resolution, thus, significantly improving
the spatial bandwidth product. However, the imaging speed
and the source brightness remain as problems that pre-
vent Fourier Ptychographic Microscopy (FPM) from real-
time imaging. Gerchberg-Saxton (G-S) algorithm [132] is
another widely used iterative phase-retrieval method. For
more references, the Fienup group has done extensive work
on iterative phase-retrieval algorithms [133].

2.4. White-light QPI methods

2.4.1. wDPM and wFPM

Laser based QPI techniques suffer from laser speckle, due
to the high coherence of the laser, which degrades the image
quality. To mitigate this problem, several white-light QPI
techniques have been developed recently. In 2012, Bhaduri
et al. developed a white-light version of DPM (wDPM)
[122,134]. In wDPM, an SLM is used as the spatial Fourier
filter to ensure full coherence of the reference field at the
CCD camera. wDPM significantly improves spatial and
temporal sensitivity over laser DPM and has been used for
studying cell morphology and dynamics [122]. To follow
up with this white-light method, Edwards et al. and Nguyen
et al. studied the spatial coherence properties in wDPM for
optimizing the method [135, 136]. In 2013, a white-light
version of FPM (wFPM) was also developed and used to
study cell membrane dynamics [120].

Mirror
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Figure 1 Spatial light interference microscopy setup.

2.4.2. Spatial light interference microscopy (SLIM)

In 2011, a white-light phase-shifting QPI method, called
spatial light interference microscopy (SLIM), was demon-
strated [137]. SLIM is an add-on to a commercial phase-
contrast microscope with a white-light illumination gen-
erated by a halogen lamp and filtered by a ring-shaped
annulus. In SLIM, as illustrated in Fig. 1, the back focal
plane of the phase contrast objective lens is relayed to the
Fourier plane of the 4f lens system, located at the output
port of a commercial microscope. At this plane, a spatial
light modulator (SLM) or a liquid crystal phase modulator
(LCPM) adds four different phase delays, 0, π /2, π and
3π /2, to the reference field, generating four different in-
terferograms at the detector plane. Combining these four
interferograms, the phase delay through the objective can
be reconstructed according to Eqs. (2.4) and (2.5).

Since SLIM is based on a commercial microscope, it can
utilize all the microscope peripherals such as atmosphere
control, temperature control, or high-precision stages. Fur-
thermore, due to the low-coherence illumination and the
common-path geometry, SLIM ensures high temporal and
spatial sensitivities, 0.03 nm and 0.3 nm in optical path
length, respectively [44]. Therefore, with this high sensi-
tivity and stability, SLIM is suitable for imaging unlabelled
live cells for a long period of time, as the cell growth hap-
pens over days and the changes in mass are on the scale of
picograms [138, 139]. Needless to say, it can also be cou-
pled with other microscopy modalities, such as fluorescence
microscopy, to obtain more specific information about the
sample. Recently, a SLIM system has been improved in its
speed to acquire 12.5 phase images per second, making it
suitable for fast dynamics studies [50].

Another advantage of SLIM is the inherent depth
sectioning effect due to the low-coherence illumination.
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Table 1 Characteristic attributes of QPI techniques

Technique Attribute

Off-axis High speed

Phase-shifting Wide field of view

Common-path High temporal sensitivity

White-light High spatial sensitivity

Similar to OCT, the coherence gating effect makes it
suitable for 3D tomographic reconstruction of the sample
refractive index distribution. Wang et al. have shown that
SLIM is capable of imaging live cells in 3D with axial
resolution of 1.34 µm [26]. Studies by Mir et al. have
shown that, with a sparsity constraint based deconvolution,
SLIM reconstructs the helical sub-cellular structures in
Escherichia coli (E. coli) cells [27]. Building upon
these experimental results, Kim et al. have developed
a physical model to describe the 3D imaging principle
of SLIM system, by extending Emil Wolf’s diffraction
tomography to a broad-band source, and further improved
the tomographic imaging using SLIM [5, 85]. This result
is described in detail in Section 4.4.

2.5. Summary

In summary, each technique applied for QPI provides a
unique advantage to the imaging technique. Off-axis tech-
niques are fast due to their single-shot nature. Phase-shifting
techniques maintain a wide field of view and diffraction
limited resolution (large space-bandwidth product), since
they do not require additional magnification. Common-path
techniques have high temporal sensitivity due to their insen-
sitivity to any time-varying noise such as vibrational noise.
White-light techniques are speckle free and offer excellent
spatial sensitivity due to their low temporal coherence. QPI
techniques can be categorized by these four attributes as
shown in Table 1. Hybrid QPI techniques have been devel-
oped to include as many of these benefits as possible. For
example, wDPM is an off-axis, common-path, white-light
technique, and SLIM is a phase-shifting, common-path,
and white-light technique. One possible way to combine
all the benefits of these QPI methods would be to simul-
taneously generating and capturing the multiple frames of
a phase-shifting interferometry based QPI system with a
white light source. In fact, a similar approach has already
been demonstrated [116, 140].

Recent advances in this field of study have brought
many different QPI techniques to provide highly sensitive
phase measurement in both 2D and 3D, with diffraction
limited resolution. Since QPI grants information about the
complex field, inverse scattering problems can be solved,
and consequently, tomographic reconstruction of transpar-
ent objects is possible. In the following sections, several
inverse scattering techniques for inferring the object struc-
ture from QPI measurements will be discussed in detail.

3. Two-dimensional inverse scattering

With the recent advances of imaging detectors, light scat-
tering measurement techniques have also been advanced to-
ward broader spatiotemporal scales of investigation, higher
sensitivities and higher throughput [70, 141–144]. Recent
developments in QPI have enabled quantitative measure-
ments of the complex field and direct extraction of the
refractive index of cells and tissues [36, 44, 59, 81, 109].
Under the first-order Born approximation, the measured
imaging field can be translated into the angular scattering
signal via a Fourier transform [145], giving light scattering
information from all measurable spatial scales. Therefore,
the scattering object can be defined uniquely by solving the
inverse scattering problem in 2D.

3.1. Angle-resolved low coherence
interferometry (aLCI)

An example of early approaches of 2D inverse scattering is
angle-resolved low coherence interferometry (aLCI). Wax
et al., using a modified Michelson (Linnik) interferometer,
measured the angular distributions of backscattered light
from a turbid media [31, 32]. In this system, the Fourier
lens leading to the reference arm is translated perpendicu-
lar to the optical axis, introducing a shift to the reference
ray, and thus, shift in the incident wave angle at the detec-
tor. Therefore, the detector measures the cross-correlation
between the reference and the plane wave component of
the scattered field that corresponds to the angle of the refer-
ence beam. By scanning the angle, the angular distribution
of the scattered light is measured. Using this angular dis-
tribution, 2D samples are characterized, and further, using
the low coherence source, the technique is extended to per-
form depth-resolved imaging [146]. aLCI has been used for
characterizing the structure and dynamics of live biologi-
cal cells without labeling as well as for medical imaging
of tissue samples for diagnosis [147–151]. More recently,
fiber-optic based aLCI for in vivo clinical applications has
been demonstrated by Zhu et al. [152, 153]. As shown in
Fig. 2, the authors applied the fiber-optic aLCI system to
measure the nuclear morphology in vivo. This technique
was used for detection of dysplasia in Barrett’s esophagus
as demonstrated in Terry et al. [154].

3.2. Synthetic aperture Fourier holographic
optical microscopy

In 2005 and 2006, Alexandrov et al. showed that the an-
gular light scattering spectrum and also the object struc-
ture at microscopic scale can be recorded by using digital
Fourier holography [25,34]. The off-axis digital holography
setup based on a Mach-Zehnder interferometer in the back
scattering geometry forms a Fourier plane image at the
CCD. Interference between the reference and the back scat-
tered field at 2.3° angle forms a Fourier hologram with a
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Figure 2 Demonstrations of fiber-optic aLCI. (a) Depth-resolved fiber-optic aLCI applied a distribution of 7 µm microspheres accompa-
nied with Mie theory fit and sizing results. Measurement for beads of various sizes have also been demonstrated. (b) in vivo application
of depth-resolved fiber-optic aLCI applied for human esophagus, accompanied with H&E microscopy image of the squamocolumnar
junction and the depth profiles from the aLCI measurement. The figures are adapted from reference [153] with permission.

modulation spatial frequency of 60 cycles/mm. By masking
the Fourier hologram to select only a scattering angle range
of 1.2°, the scattered power is determined as a function
of scattering angle. The Fourier hologram is then inverse
Fourier transformed to reconstruct the image of the sample.
An area corresponding to a microbead is selected and its
scattering pattern is shown and compared with Mie theory,
showing a good match between the theory and the mea-
surement. This approach has been referred to as synthetic
aperture Fourier holographic optical microscopy as it uses
a frequency domain measurement to infer a high-resolution
image.

3.3. Fourier transform light scattering (FTLS)

Fourier transform light scattering (FTLS) is a method for
studying both static and dynamic light scattering [28], com-
bining the high spatial resolution in optical microscopy
and the intrinsic averaging of light scattering. FTLS is in
some ways the reverse of the synthetic aperture Fourier
holographic method, as it uses image plane measurements
to extract scattering information. As illustrated in Fig. 3,
imaging can be interpreted as the coherent summation (in-
terference) of all the plane waves scattered by the object

and captured via the numerical aperture of the imaging
system (imaging = scattering + interference). Therefore,
given that both the amplitude and phase information are ob-
tained through imaging, the scattering from all angles can
be recovered simultaneously, in one shot. In order to ob-
tain amplitude and phase measurement, FTLS relies on the
phase measurement of QPI techniques. The phase and am-
plitude associated with a microscope image, and, thus the
information on the full complex field, is numerically prop-
agated to the Fourier plane of the optical system, where the
scattering distribution, Ũ (px , py), can be determined as,

Ũ (p⊥, t) =
∫

U (r⊥, t)eip·r⊥dxdy. (3.1)

where p = ks − ki is the momentum transfer, ks the scat-
tered wavevector, ki the incident wavevector and r⊥ =
(x, y). Now, p, the magnitude of vector p, is related to
the scattering angle, θ , as p = (4π/λ) sin(θ/2), where λ is
the wavelength of the illumination. Therefore, the angu-
larly scattered field, Ũ (θ ), can be determined from a single
image through FTLS.

Validation of this technique was done by measuring
polystyrene microbeads and comparing the scattering pat-
tern with the Mie theory model for spherical scatterers [28].
After validating the technique, Ding et al. applied FTLS to
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Figure 3 Imaging interpreted
as an interference phenomenon
between the unscattered field
(blue arrow) and the scattered
field (orange arrows).

extract scattering parameters, such as the anisotropy factor
and the scattering mean free path, of biological tissue sam-
ples to characterize the bulk tissues [155]. Further studies
showed that these scattering parameters can successfully
separate the benign and cancerous regions in a prostate
tissue biopsy [137].

Figure 4 shows an example of an FTLS measurement.
Figure 4a shows the phase image of a human neuron culture
obtained by SLIM. The scattered field in the spatial fre-
quency domain is obtained by taking the Fourier transform
of the complex image field. Figure 4b shows the amplitude
distribution of the scattered field in the spatial frequency
domain. Figure 4c shows the angular scattering signal ob-
tained by averaging in the azimuthal direction of the map
in Fig. 4b. Furthermore, the area marked with a dashed box
in Fig. 4a is expanded and displayed in Fig. 4d, to show
the scattering map of an FTLS result from an anisotropic
sample. Figure 4e shows the scattering map, its elliptical
shape indicating strong anisotropy. Figure 4f shows the
profiles taken from the two angles indicated in Fig. 4e. The
result demonstrates a much slower decay in the 20° direc-
tion, which is perpendicular to the dendrite structure in Fig.
4d, compared to the 110° direction. Also, the 20° profile
shows a periodic ripple corresponding to the width of the
dendrite. It important to emphasize that even though the
scattering structure is very thin (dendrite portions in Fig.
4d), FTLS yields angular scattering intensity distribution
with a dynamic range of over 3 orders of magnitude. A
direct, goniometer-based measurement will likely require
photon counting detection. The reason FTLS is so sensitive
and of high dynamic range is that the measurement is per-
formed at the image plane where all the k-vectors overlap,
thus increasing the detected signal.

Recent developments of fast QPI systems, such as DPM
or SLIM, enabled the acquisition of phase images at video
rate [50, 134]. This high acquisition speed makes FTLS
very suitable for studying fast dynamics. In order to quan-
tify the dynamics of samples using the angular scattering
signal from FTLS, human red blood cell (RBC) membrane
fluctuations were studied [23,28]. By taking time-lapse im-
ages of an RBC, the membrane displacement histogram and
the power spectrum associated with the FTLS signal were
calculated. The power spectrum showed different power
laws with different exponents in time for all scattering
angles. More specifically, the decay of the power spec-
trum was slower at larger angle (associated with smaller

spatial dimension), indicating a more solid behavior. The
exponent, -1.36, of the power spectrum at smaller angle
matched with the exponent, -1.33, from a previous study
done by Brochard et al. [156]. Furthermore, FTLS has been
used to study the dynamic properties of Enteric glial cy-
toskeleton before and after treatment with Cytochalasin-D,
which inhibits actin polymerization [157, 158]. Spatially
averaged power spectra associated with FTLS signal for
a single cell revealed that the membrane fluctuation on
the untreated cell is more active. Also, frequency-averaged
power spectra showed enhanced membrane fluctuation on
the untreated cell. Comparing the power spectra before and
after the treatment, it was shown that the disruption of actin
contributes to more “random” or Brownian motion on the
cell, as expected.

Further studies have advanced this type of imaging-
based angular scattering studies and successfully quanti-
fied the dynamics of samples. By measuring the disper-
sion curves that depend on the temporal bandwidth at each
spatial frequency, Wang et al. quantified dynamics, both
random and deterministic, of intracellular transport using
the quantitative phase images from a SLIM system [44].
Using the so-called dispersion-relation phase spectroscopy
(DPS) technique, the authors have shown that the intra-
cellular transport is dominated by diffusion, or Brownian
motion, at small scale, and by directed motion at larger
scale. Also, diffusion coefficients and transport velocities
of these motions are extracted from the DPS technique.

More recently, FTLS has been combined with other
means of optical techniques, such as angle-resolved scat-
tering, swept-source spectroscopy and synthetic aperture.
By combining with angle-resolved scattering methods, in
2012 and 2014, FTLS has been applied for studying red
blood cells and individual rod-based bacteria by Kim et al.
and Jo et al. [159, 160]. Application of FTLS has also
been expanded for materials research by Yu et al. in 2012
[161]. The authors studied colloidal clusters using FTLS,
and identified the scattering patterns of two-dimensional
colloidal clusters including dimer, trimer and tetrahedron
shapes. Furthermore, combining FTLS with swept-source
spectroscopy and angle-resolved light scattering, Jung et al.
added a new dimension to the FTLS measurements, now
including the temporal frequency domain [162]. There has
also been an attempt to simplify FTLS measurement by em-
ploying in-line geometry in the holographic measurement.
In 2012, Kim et al. used an in-line holography geometry
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Figure 4 Fourier transform light
scattering. (a) A quantitative
phase image of a neuron culture
acquired using SLIM. Color bar
is in radians. (b) Scattering map
calculated from the quantitative
phase image. (c) Angular scat-
tering signal acquired by radially
averaging the scattering map.
(d) A zoom-in from the area indi-
cated in (a). (e) Scattering map
calculated from the area shown
in (d). (f) Angular scattering sig-
nals showing two perpendicular
directions indicated in (e).

Figure 5 Illustration of syn-
thetic FTLS. (a) Regular FTLS
where the spatial frequency cov-
erage is limited to the NA of
the objective. (b) Synthetic FTLS
where the spatial frequency is
expanded.

and successfully applied FTLS measurement to the system
[163]. One of the most significant improvement to FTLS
has been demonstrated by Lee et al., in 2013 [164]. The
authors applied the synthetic aperture technique to FTLS in
order to expand the spatial frequency coverage beyond the
NA of the objective. Figure 5 shows an illustration of the
expanded spatial frequency coverage of synthetic FTLS.

3.4. Summary

Quantitative phase imaging, by providing the information
about the complex field scattered by the object, directly
relates light scattering measurements with imaging. There-
fore, it is possible to infer the structure of the scattering
object from the scattering measurements, such as aLCI and
synthetic aperture Fourier holographic optical microscopy,

by solving the inverse scattering problems in 2D. As shown
with FTLS, it is also possible to obtain scattering infor-
mation from a QPI image and infer the structural infor-
mation from the spatial power spectrum. Furthermore, as
shown in DPS, time-resolved QPI allows for measuring dy-
namic samples and obtain physical constants, such as dif-
fusion coefficients and transport velocities. Further recent
developments in 2D inverse scattering methods incorporate
other optical techniques to improve resolution, speed, and
functionality.

4. Three-dimensional inverse scattering

Live cells are highly dynamic in all three dimensions.
Cell membrane fluctuation, mass transport, and motility
are good indications of the organelle functionality and
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viability, which are also linked to the health of the en-
tire organ and body. To better study these processes, 3D
mapping of the cell refractive index is very informative.
Recently, this type of tomographic imaging has motivated
researchers to solve 3D inverse scattering problems with
visible light.

4.1. Early history

Since the early 1900s, the inverse scattering problem has
been studied extensively in the X-ray spectrum with the goal
of determining crystal structures [1]. In the optical regime,
Wolf, proposed a theoretical model to solve the 3D inverse
scattering problem, later known as optical diffraction to-
mography (ODT) [5]. ODT established a Fourier transform
relation between the measured field and the object’s sus-
ceptibility map. In the early years, due to the limitations
of the computers and image sensors, experimental work
exploiting this result was very limited. In the late 1950s,
Oldendorf pioneered the use of X-ray sources for 3D to-
mographic reconstruction of macroscopic portions of the
human body. Known as X-ray computed tomography (X-
ray CT), the method allowed imaging of specific sections
of the body without surgery [165]. In X-ray CT, the Radon
transform technique describes the absorption line integral
and is used to reconstruct the object in 3D [166].

X-ray diffraction exploits the field interaction with the
real part of the dielectric permittivity, which generates
scattering and informs about the wavelength-scale struc-
ture of an object. By contrast, X-ray CT exploits the field
interaction with the imaginary part of the dielectric per-
mittivity, which generates absorption and informs about
the absorption-length-scale structure of an object. In 1985,
Snyder et al. [167], following up on the work by Byer’s
group on optical absorption tomography [168], used laser
interferometry to perform one of the earliest optical diffrac-
tion tomography experiments. They scanned the incident
laser beam from 0o to 360o with a rotating mirror and mea-
sured in the far-zone ten projected interferograms, each
spaced by 36o, with a 512 pixel by 512 pixel camera
(50 µm square pixel size). Then, they extracted the phase
and interpolated the data to 100 projections to reconstruct
the 3D refractive index map of a glass rod using a computer.
Their experiment demonstrated the feasibility of using op-
tical diffraction tomography for 3D object reconstruction.
In 1993, Schatzberg et al. proposed an iterative method,
based on a priori object support model, to obtain the to-
mogram by measuring the scattered field intensity in the
far-zone [169]. However, the iterative phase retrieval prob-
lem is ill-posed and only applies to certain types of objects,
leaving the accuracy of the results in doubt, especially when
measuring unknown objects. Due to all these difficulties,
optical diffraction tomography did not make a big impact
in its early years.

Thanks to the advances in computers and camera tech-
nologies, quantitative phase imaging has become a very
active area. Driven by the imaging need in biomedicine and

material science, many high sensitivity and high resolu-
tion QPI techniques have recently emerged and revived the
research in optical diffraction tomography. Next, we first
present the 3D inverse scattering theory and then review
the recent works on optical diffraction tomography.

4.2. 3D inverse scattering theory

4.2.1. Direct problem

The 3D scattering problem can be described by the inho-
mogeneous Helmholtz equation, namely,

∇2U (r,ω) + n2 (r) β2
0 (ω) U (r,ω) = 0, (4.1)

where β0(ω) = ω/c is the propagation constant, or
wavenumber, in vacuum. U (r,ω) is the total field, which
can be decomposed as U (r,ω) = Ui (r,ω) + Us(r,ω), with
Ui (r,ω) the incident field and Us(r,ω) the scattered field
from the object. The incident field satisfies the homoge-
neous wave equation, thus, reducing Eq. (4.1) to,

∇2Us (r,ω) + β2 (ω) Us (r,ω)

= −β2
o (ω) χ (r,ω) U (r,ω) , (4.2)

where β(ω) = n̄β0(ω) is the average propagation constant
in the medium, n̄ = ⟨n(r)⟩ is the spatially averaged refrac-
tive index, and χ (r,ω) = n2(r,ω) − n̄2(ω) is the suscep-
tibility of the object. In the following, we will assume a
dispersionless object, i.e., χ (r,ω) = χ (r). In order to di-
rectly solve for the scattered field, an assumption about the
light-matter interaction is needed for simplification. For
weakly scattering objects, the (first-order) Born and Rytov
approximations are most commonly used. Both methods
have been widely practiced in optical diffraction tomogra-
phy. For the first-order Born approximation, the refractive
index variation is assumed to be very small compared to
the background, and the phase accumulation inside the ob-
ject is assumed to be much smaller than 2π . Under this
assumption, the scattered field originates only in single
scattering events and is much smaller in amplitude than
the incident field: Us(r,ω) ≪ Ui (r,ω), resulting in a linear
relation between the scattered field and the object suscep-
tibility. On the other hand, the Rytov approximation as-
sumes the total field as a phase function, e,(r), where the
function ,(r) contains information about the scattered field
[170]. Previous studies have shown that Rytov approxima-
tion is valid when the gradient of the refractive index is
very small, making it more suitable for smooth and rela-
tively large objects [see Chapter 8 of reference [171]]. Since
we are interested in high-resolution imaging of thin sam-
ples, in the following formulation we use the first-order
Born approximation to solve Eq. (4.2). Thus, the total
field inside the object, U (r,ω), can be approximated by
the incident plane wave, Ui (r,ω) = A(ω)eiβ(ω)k̂i ·r, where
k̂i = k̂⊥i + k̂zi is the propagation direction unit vector.
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Equation (4.2) becomes,

∇2Us (r,ω) + β2 (ω) Us (r,ω)

= −χ (r) β2
0 (ω) A (ω) eiβ(ω)k̂i ·r. (4.3)

Equation (4.3) can be solved in the wavevector space [
29, 45, 172] by taking the 3D Fourier transform on both
sides, namely

[β2(ω) − k2]Us(k,ω) = −β2
0 (ω)A(ω)χ [k − β(ω)k̂i ].

(4.4)

Re-arranging and substituting the variables in Eq. (4.4), the
scattered field Us(k,ω) is solved as

Us (k,ω)

= −β2
0 (ω) A (ω) χ [k − ki ]

1
2q

(
1

kz − q
− 1

kz + q

)

= −β2
0 (ω) A (ω) χ

[
k⊥ − β (ω) k̂⊥i , kz − β (ω) k̂zi

]

× 1
2q

(
1

kz − q
− 1

kz + q

)
, (4.5)

where q is defined as q =
√

β2(ω) − k2
⊥ with k⊥ = |k⊥|.

The two fractional terms in Eq. (4.5), 1/(kz − q) and
1/(kz + q), correspond to the forward scattered and back-
ward scattered fields, respectively. By taking the inverse
Fourier transform with respect to kz , a new representation
for the forward scattered field, U f ,and the backward scat-
tered field, Ub, are obtained as a function of transverse
wavevector, k⊥, axial distance, z, and angular frequency,
ω

U f (k⊥, z,ω) = −β2
o (ω)A (ω) eiqz

2q

×χ
[
k⊥ − β (ω) k̂⊥i , q − β (ω) k̂zi

]
, (4.6a)

Ub (k⊥, z,ω) = β2
o (ω)A (ω) e−iqz

2q

×χ
[
k⊥ − β (ω) k̂⊥i ,−q − β (ω) k̂zi

]
. (4.6b)

Notice that, the scattered fields strongly depend on the op-
tical frequency, despite the fact that the object is assumed
dispersion-less. Importantly, Eqs. (4.6a) and (4.6b) relate
the 3D Fourier transform of the object function to the 2D
Fourier transform of the scattered field.

4.2.2. Inverse problem

Typically, the signal measured in interferometric mi-
croscopy is the cross-correlation between the scattered and

the reference field. The cross-spectral density W, as a func-
tion of k⊥ and z, can be written as [172]

W (k⊥, z,ω) = Us(k⊥, z,ω)Ur
∗(zR,ω), (4.6)

where Ur (zR,ω) = A(ω)eiβ(ω)·zR is a plane wave propa-
gating on along the optical axis z, and zR is the prop-
agation distance of the reference beam with respect to
z = 0 (defined by the scattering potential coordinate sys-
tem). Thus, the general solutions to the inverse scattering
are [45]

χ
[
k⊥ − β (ω) k̂⊥i , q − β (ω) k̂zi

]

= −2qW f (k⊥, z,β) e−i(qz−β·zR )/[
β2

o S (β)
]
, (4.7a)

χ
[
k⊥ − β (ω) k̂⊥i ,−q − β (ω) k̂zi

]

= 2qWb (k⊥, z,β) ei(qz+β·zR )/[
β2

o S (β)
]
, (4.7b)

where W f and Wb are the forward and backward mea-
sured scattered, and S(β) = |A(β)|2 is the incident field
power spectrum. It should be noted that if the experi-
ment measures S(λ), a Jacobian transformation, i.e., S(β) =
−λ2S(λ)/(2π n̄), is necessary to map S(λ) to S(β). Sim-
ilarly, if W f (λ) and Wb(λ)are measured, as in Fourier-
domain OCT, the Jacobian is necessary to describe these
functions in the β domain.

Equations (4.7a) and (4.7b) are the foundation for 3D
object reconstruction using optical diffraction tomography.
From this equation, we see that one way to reconstruct the
object in 3D is scanning the incident laser beam angle,
given by k̂⊥i (or, equivalently, rotating the object around
its axis) and measure the 2D cross-spectral density at each
angle. Thus, the object 3D structure is determined through
the Fourier transform relation. This laser angle-scanning
method is the most commonly used in optical diffraction
tomography. In section 4.3, we review some recent devel-
opments on this technique. The second way to perform the
3D reconstruction is scanning the optical frequency orβ
and measuring the 2D cross-spectral function at each fre-
quency, which is done in Fourier-domain optical-coherence
tomography (OCT). The third way to perform 3D recon-
struction is to scan the object through the focus. The method
is presented in detail in Section 4.4. For the first two recon-
struction methods, the transverse object reconstruction res-
olution is determined by the momentum transfer between
the incident wavevector and the scattered wavevector, repre-
sented by the term k⊥ − β(ω)k̂⊥i in the object function. The
depth resolution is determined by the spread in momentum

transfer, which is q − β k̂zi =
√

β2 − k2
⊥ − β k̂zi for trans-

mission geometry and −q − β k̂zi = −
√

β2 − k2
⊥ − β k̂zi

for reflection geometry. Due to the longer axial projection,
backscattering measurements have better sectioning effect
than transmission measurements. The Ewald sphere rep-
resentation can be used to visualize the 3D reconstruction
under both geometries [45]. Due to the dependence of the
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axial field distribution on the transverse wavevector, a sam-

pling of the axial frequency kz as kz =
√

β2 − k2
⊥ − β k̂zi

or −
√

β2 − k2
⊥ − β k̂zi is necessary prior to the 3D recon-

struction. With the inverse scattering solutions provided
by Eqs. (4.7a)) and (4.7b), one can use regularization or
sparse deconvolution methods to obtain uniform object re-
construction [9, 14, 29, 173]. For transparent objects mea-
surement, the transmission geometry is widely used. How-
ever, in confocal microscopy, the reflection geometry is
usually pursued, allowing for better depth resolution. It is
worth mentioning that the 3D reconstruction in Eq. (4.7b)
can be also applied to the Fourier-domain OCT, without
the far-field approximation typically used in interferomet-
ric synthetic aperture microscopy (ISAM) [14]. Lastly, Eqs.
(4.7a) and (4.7b) simulate the scattering measurement in
angle-resolved low-coherence interferometry (aLCI) for
determining depth-resolved angular scattering from tissues
[33, 146].

4.3. Laser diffraction tomography

Equations (4.7a) and (4.7b) establish the exact relation-
ship between the scattered field and the object structure.
For monochromatic waves, this equation recovers Wolf’s
optical diffraction tomography [5]. ODT combines X-ray
diffraction principles with optical holography to obtain 3D
tomographic imaging with visible light. Recently, several
groups have demonstrated laser diffraction tomography,
mainly with applications to label-free 3D imaging of bi-
ological samples. Here, we review several representative
laser diffraction tomography works.

4.3.1. Angle scanning tomography

Angle-scanning laser diffraction tomography systems ei-
ther scan the incident beam angle or rotate the object around
its axis and record multiple phase images. The phase is re-
trieved usually by measuring with off-axis or phase-shifting
interferometry techniques. Figure 6 shows a typical angle-
scanning diffraction phase tomography system based on
a Mach-Zehnder off-axis interferometer. An incident laser
beam is split into a reference and signal field via a beam
splitter. In the signal arm, a galvanometer mirror is used to
scan the incident beam angle onto the specimen plane. The
angle range is limited by the condenser numerical aperture.
After the intermediate image plane, a 4f system is used to
relay the image onto the detector, where the signal beam in-
terferes with the reference beam to form an interferogram.
The interferogram is recorded each angle and used to re-
construct the tomographic image using an inversion model.

In 2006, Charrière et al. demonstrated a tomographic
imaging system using a diode laser based digital holo-
graphic microscope [10]. The experimental setup follows
that of typical digital holographic microscopy (off-axis in-
terferometry), which measures the interference between the

reference beam and the sample beam in transmission ge-
ometry. Therefore, the measurement yields the complex
scattered field at the CCD. At the sample plane, the object
is embedded in a micropipette, which allowed the sample to
rotate. The acquisition is done 90 times over 180˚ range with
2˚ steps at a rate of 1 Hz. By performing the Radon trans-
formation and combining each of the 90 measurements, the
tomography of a sample refractive index distribution is re-
constructed. Figure 7, adapted from reference [10], shows
the 3D refractive index reconstruction of a pollen cell us-
ing the digital holographic microscopy system. Figure 7a
shows a central xy plane slice of the 3D refractive index
mapping of the pollen cell, Fig. 7b shows slices along yz
plane at different x positions, and Fig. 7c shows slices along
xz plane at different y positions. The schematic of the slices
are illustrated in Fig. 7d. From the tomographic measure-
ments, the nucleus structure of the pollen cell can be clearly
distinguished. Using the refractive index of the surround-
ing medium, 1.473, the refractive index of the nucleus is
evaluated to be around 1.53. In addition, this 3D refractive
index mapping can be potentially applied to determine the
composition of the substances in the cell. The success of
reconstructing the 3D refractive index proved that optical
diffraction tomography is a feasible way to noninvasively
visualize 3D cellular structure.

In the prior tomography system, fixing the object rota-
tion axis could be problematic and the rotation tends to per-
turb the sample. A year later, Choi et al. presented another
laser-based diffraction tomography method, referred to as
tomographic phase microscopy (TPM) that utilizes a phase-
shifting QPI method based on reference wave frequency-
shifting using acoustic-optical modulators (AOMs) [8]. Un-
like Charrière et al. this method scans the incident beam
angle over a range of 60˚ using a galvanometer mirror in
the illumination light path. Thus the sample is kept unper-
turbed, but the angular range covered is more limited than
when rotating the sample. The method was applied success-
fully to imaging live cells and even multicellular organisms,
such as a Caenorhabditis elegans (C. elegens). To use the
3D refractive index for examining the physiology changes
in living cell, the authors investigated the effects of low
concentration acetic acid on the morphology of the cell.
These effects are well known to cause whitening of areas
of the cervix, which is possibly due to the coagulation of
the nucleus proteins, thus increasing the refractive index
contrast between the nucleus and cytoplasm [174]. This
method is widely used to identify the suspicious sites of
precancerous lesions. Figures 8a and 8b are xy slices of the
index tomogram of a HeLa cell cultured in normal medium
and 3 minutes after culturing in medium containing 0.38%
acetic acid, respectively. As expected, dramatic increases
of the nucleus refractive index (from 1.36 to 1.39) and
its inhomogeneity are observed. After replacing the acetic
acid medium with normal medium for another 3 minutes,
the cell nucleus refractive index distribution started to re-
cover, but still remained somewhat higher than the base-
line, as observed in Fig. 8c. To exemplify the multicellular
organism tomographic imaging capability of TPM, a par-
alyzed C. elegans in nematode growth medium is imaged.
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Figure 6 A typical angle-scanning diffraction phase tomography system based on a Mach-Zehnder off-axis interferometer.

Figure 7 Tomography of a pollen cell
RI: (a) cut along the xy plane in the mid-
dle of the pollen cell (b), cuts at different
positions in the cell along the yz plane,
and (c) the xz plane, and (d) schematic
of the presented cuts. The figures are
adapted from reference [10] with permis-
sion.

Figure 8d shows a mosaic xy slice of the index tomogram
of the whole C. elegens, where the pharynx and digestive
tract are clearly revealed.

Choi et al. and Charrière et al. both used the filtered
back-projection reconstruction method based on the Radon
transform, like in X-ray CT, and treated the phase as a

line integral of the refractive index along the projection di-
rection and ignored the diffraction effect. Therefore, the fil-
tered back-projection reconstruction method hindered them
in achieving high transverse resolution, as this method is
only suitable for samples thinner than the depth of field. In
2009, Sung et al. proposed using a Rytov approximation

www.lpr-journal.org C⃝ 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



LASER
& PHOTONICS
REVIEWS

26 T. Kim et al.: Solving inverse scattering problems in biological samples by quantitative phase imaging

Figure 8 Effects of acetic acid on HeLa
cell morphology and imaging of a C. el-
egans multicellular organism. (a) An x-y
slice of the index tomogram from a HeLa
cell in normal culture medium. (b) The
x-y slice of the index tomogram from the
HeLa cell after 3 minutes in medium con-
taining 0.38% acetic acid. (c) 3 minutes
after replacing the acetic acid with the
normal medium. (d) A mosaic x-y slice of
the index tomograms of the C. elegans.
The scale bar for (a)-(c) is 10 µm and
50 µm for (d). Color bar represents the
refractive index. The figures are adapted
from reference [8] with permission.

based optical diffraction tomography model to improve the
3D reconstruction performance and the transverse imaging
resolution, 0.35 µm, compared to that of Choi’s earlier sys-
tem, 0.5 µm [43]. However, due to the limited angle cover-
age of the scanning beam in TPM, certain sample frequency
information is missed and this resulted in reconstruction
artifacts such as sample elongation along the optical axis.
To overcome this issue, a regularization method, based on
sample refractive index positivity and piece-wise smooth-
ness constraints, has been applied to the TPM numerical
reconstruction model [9].

More recently, Kim et al. [175] provided an application
of angle scanning optical diffraction tomography to im-
age red blood cells parasitized by Plasmodium falciparum
(Pf-RBCs) and compared the refractive index distribution
of these cells with normal RBCs. In this work, reconstruc-
tions from the diffraction tomography method are compared
with those from the projection method, which assumes no
diffraction from the sample. The result, shown in Fig. 9, re-
veals that the diffraction tomography method reconstructs
the refractive index distribution more accurately than the
projection method because it recovers the scattering map
by taking into account the diffraction through the sample.

4.3.2. Synthetic aperture tomography

In the previous angle-scanning laser ODT system, due to
the laser speckle phenomena and the limited coverage of the
scanning angle, these systems usually do not have good sen-
sitivity and the resolution is limited to λ/2 or worse. In 2013,
Cotte et al. proposed a synthetic aperture digital holographic
microscopy approach by using two identical 63x/NA = 1.4
oil immersion objectives, and scanning the aperture of the
upright objective [12]; see the system schematic in Fig.
10a. Due to the use of high NA objective lenses, their sys-
tem can collect the scattered light with an angle coverage
close to 2π ; thus, they call their technique quasi-2π -digital
holographic microscopy (2π -DHM). Figure 10b shows a

synthesized 2π (kx, ky) plane measurement, expanding the
original frequency space signal coverage by a factor of two.
Figure 10c shows the (kz, kx) plane signal which is due to
the low-pass filtering of system coherent transfer function,
and Fig. 10d is the complex deconvolved signal in Fig.
10c. The 3D reconstruction uses the complex deconvolu-
tion algorithm and achieves transverse imaging resolution
more than a factor of two better than the diffraction limit
(experimentally claimed 90 nm transverse resolution). This
system has been successfully applied to imaging of neural
network, porous cell frustule (diatom), and E. coli in 3D.

4.3.3. New developments

In ODT, the object reconstruction resolution is determined
by the coverage in the momentum transfer, p = ks − ki .
In 2012, Sentenac et al. proposed a grating-assisted optical
diffraction tomography system to achieve λ/10 resolution
[30]. By putting the sample on a nanostructured metallic
films and scanning the illumination angle, one can gen-
erate surface plasmon modes that have very high spatial
frequencies and can couple them into the far field, thus,
tremendously increasing the object reconstruction resolu-
tion. In their simulation, they resolved two dipole like glass
objects separated by λ/10 by using an inverse model based
on Green tensors. For weakly scattering objects, the first-
order Born approximation or the Rytov approximation are
usually good approximations to the field inside the object.
However, for non-weakly scattering objects, the field in-
side the object is complicated and these approximations
are invalid, which prohibited accurate reconstruction of the
object. To overcome this issue, the same group developed
an iterative method to solve the exact field inside the object
and to correctly reconstruct the object structure [176, 177],
which experimentally enabled them to realize transverse
superresolution in optical diffraction tomography. The
iterative Green tensor approach by Sentenac et al. is com-
putationally expensive.
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Figure 9 Comparison of var-
ious 3D reconstruction algo-
rithms. (a) A schematic diagram
of various angles of illumina-
tions on a sample. (b) Quanti-
tative phase images of a Plas-
modium falciparum-red blood
cell (Pf-RBC) in the tropho-
zoite stage measured at var-
ious illumination angles and
(c) corresponding spectrum in
Fourier space. (d) and (e) show
a side by side comparison of
the Fourier space object func-
tions reconstruction using the
projection algorithm (left panel)
and the diffraction algorithm
(right panel), respectively; (d)
shows the amplitude distribu-
tions of the object functions re-
constructed by both algorithms
with five representative illumi-
nations angles and (e) shows
the reconstruction with the full
illumination angles. (f) Recon-
structed RI maps of the Pf-RBC
at the trophozoite stage.

Figure 10 A description
of the synthetic aperture
homographic microscopy. (a)
A system schematic descrip-
tion. (b) The measured and
synthesized aperture. (c) The
low-pass filtered (kz, kx) plane
spatial frequency signal due to
the system coherent transfer
function. (d) The complex de-
convolution of the signal in (c).
The figures are adapted from
reference [12] with permission.

Very recently, Psaltis’ group at EPFL applied machine
learning to diffraction tomography [178]. In this paper, the
authors trained an artificial neural network to reproduce a
complex field which is measured from an angle-scanning
phase tomographic system. The network is constructed by
the beam propagation method and dividing the sample into

thin slices in the propagation direction. The beam propaga-
tion method models the scattering process, while an error
backpropagation method is used to train it. With the trained
network, a 3D refractive index map of the object, which
matches the experimental observations, is recovered. Fig-
ure 11 shows an example of a live cell 3D imaged using this
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Figure 11 An artificial neural network is configured to simulate
the propagation of light through an inhomogeneous medium (a
cell). The difference between the predictions of the network and
the experimental measurements is minimized by modifying the
parameters of the neural network. The parameters of the trained
network are directly related to the index distribution of the cell.

learning method. By modifying the parameters of the neu-
ral network, the difference between the network prediction
and the experimental measurements is minimized, leading
to a more precise recovery of the 3D index distribution of
the cell.

In nature, many biological specimens possess
anisotropic properties. Polarization microscopy, or pol-
Scope developed by Oldenbourg et al. in mid-1990s [179],
is capable of providing high image contrast, due to bire-
fringence, without sample staining. Pol-Scope, particularly
sensitive to the fibrous cell structures, was made possible
to observe in real-time mitotic spindle isolating from fertil-
ized sea urchin egg, newt lung epithelial cell in mitosis, etc.
In 2008, Wang et al. demonstrated a polarization-resolved
quantitative phase microscopy to image transparent and
anisotropic samples [180]. Nevertheless, in literature, there
have been very few publications on polarization-resolved
optical diffraction tomography. In Wolf’s initial ODT the-
ory, only the scalar field inverse scattering solution is pro-
vided. In this paper, he promised to publish a vector field
formulation, but it was not done until 33 years later by
Lauer [181]. Using the vector-field diffraction tomography
theory, Zhang et al. demonstrated a full-polarized diffrac-
tion phase tomography system [182]. With the polarization-
resolved tomography system and an inversion model based

on vector-field ODT, the authors reconstructed the permit-
tivity map of nano-rod structures of 100 nm wide, 300 nm
long, and 140 nm high with a resolution of about 170 nm.

Most of the optical diffraction tomography systems are
based on interferometric measurements, but the complex
field can be also retrieved with only intensity measure-
ments, under some strong assumptions [128, 183, 184]. In
2013, G. Zheng et al. proposed Fourier ptychographic mi-
croscopy [185], an imaging technique similar to synthetic
aperture imaging, which measures intensity at different il-
lumination angle and extends the fields of view by using
a low-numerical aperture objective lens. Fourier ptycho-
graphic microscopy has been used for 2D phase imaging
of large stained samples to producing high resolution gi-
gapixel images, but recently it has been demonstrated for
unstained biological imaging in 3D [186]. Sharing the simi-
larity of synthetic aperture imaging, Fourier ptychographic
microscopy also holds promises for optical diffraction to-
mography. In particular, it can be combined with coded
aperture to perform compressive sensing, reduce the num-
ber of measurements, and increase the imaging photon
flux, thus increasing the speed for tomographic reconstruc-
tions [187, 188]. 3D imaging using Fourier ptychographic
or the conventional interferometric ODT systems typically
involves illumination angle scanning. Very recently, P. Hos-
seini et al. developed a fast ODT system that scans the color
of three illumination beams coming from a supercontinuum
source by using an acousto-optic tunable filter [189].

4.4. White-light diffraction tomography

Most of the previous optical diffraction works are based
on non-common-path laser interferometric QPI; thus, the
imaging suffers from laser speckle and mechanical noise.
To reconstruct the depth dimension, laser angle scanning,
objection rotation, and aperture synthesis approaches were
proposed. White light is temporally incoherent, thus, im-
mune to speckle noise, offering very high sensitivity phase
measurement. In 2014, Kim et al. provided an inverse scat-
tering solution for spatially coherent, temporally incoherent
light by solving the wave equation in the wavevector space
under the first-order Born approximation. This method is
referred to as white-light diffraction tomography (WDT).
WDT is an extension of Wolf’s optical diffraction tomogra-
phy (ODT) to broadband illumination. Also, WDT operates
in imaging rather than a scattering geometry, offering higher
sensitivity than traditional far-field measurements. WDT
measures the complex scattered field using a common-path
phase-shifting QPI technique called SLIM, and solves the
inverse scattering problem to recover the structure of a scat-
tering medium with sub-micron resolution in all three di-
mensions. In the following sections, we describe WDT in
more detail.

4.4.1. White-light diffraction tomography theory

Unlike other previous approaches by Wolf or interfero-
metric synthetic aperture microscopy (ISAM) [14], WDT
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employs a new method to solve the inverse scattering
problem. Specifically, the calculation is performed in the
wavevector space instead of the traditional, spatial domain
calculations using the Green function. Here, we use the
results from section 4.2 to formulate WDT. In QPI, the in-
terference between the scattered field and the plane wave
reference is measured. Therefore, the cross-spectral density,
W12(k⊥, z; ω), is the measured quantity. For transmission
QPI system, this quantity can be expressed as,

W12 (k⊥, z; ω) = −β2
0 (ω) S (ω)

2q
ei[q−β(ω)]z

×χ (k⊥, q − β (ω) ; ω) , (4.8)

where S(ω) = |A(ω)|2 is the power spectrum of the inci-
dent field. In SLIM, a broadband source is used. Therefore,
according to the central ordinate theorem of Fourier trans-
formation, the temporal cross correlation at zero-delay can
be evaluated by integrating Eq. (4.8) over the frequency,

"12 (k⊥, z; 0) = −
∞∫

0

β2
0 (ω) S (ω) ei(q−β(ω))z

2q

×χ (k⊥, q − β (ω) ; ω) dω. (4.9)

In order to evaluate the integral, the frequency variable,
ω, in Eq. (4.9) can be replaced by an integral over β using
the relation β = n̄ω/c, thus,

"12 (k⊥, z; 0) = − c
2n̄3

∞∫

0

β2
0 S

(
βc

/
n̄
)

ei(q−β)z

q

×χ (k⊥, q − β) dβ. (4.10)

By defining a new variable, Q = q − β =
√

β2 − k2
⊥ −

β, as a re-sampling of kz , Eq. (4.10) can be simplified further
by replacing β and q with β = −(Q2 + k2

⊥)/2Q and q =
(−Q/2 + k2

⊥/2Q), respectively. With the Jacobian trans-
formation, dβ = (−1/2 + k2

⊥/2Q2)d Q and S(βc/n̄) ↔
(n̄λ2/2πc)S(λ), which is necessary since the measurement
of spectrum is typically done as a function of wavelength,
Eq. (4.10) becomes,

"12 (k⊥, z; 0) = 1
8n̄2

∞∫

0

(
Q2 + k2

⊥
)2

Q3
S

×
(

− Q2 + k2
⊥

2Q

)
χ (k⊥, Q) ei Qzd Q

= 1
8n̄2

FT −1
Q

×
[(

Q2 + k2
⊥
)2

Q3
S

(
− Q2 + k2

⊥
2Q

)]

⃝v zχ (k⊥,−z)

= - (k⊥,−z) ⃝v zχ (k⊥,−z) (4.11a)

Alternatively, in the 3D spatial frequency space, (k⊥, Q),
the cross correlation becomes,

"12 (k⊥, Q) = - (k⊥, Q) χ (k⊥, Q) . (4.11b)

Equation 4.11 relates the coherent transfer function
(CTF), -, the object function, χ , and the measurement
"12. CTF describes the instrument response from the imag-
ing system, including the incident spectrum and also the
numerical aperture, which limits the k⊥ range of the sys-
tem. Therefore, the sectioning effect of the imaging system
is determined by the temporal coherence function and the
numerical aperture. Equation (4.11a) shows that the depth
information of the scattering potential, χ (k⊥, z), can be re-
covered by measuring at different z-positions. Therefore,
by scanning the focus through the sample in the imaging
system followed by a deconvolution in the spatial domain,
the object’s 3D distribution can be obtained.

4.4.2. Point-spread function calculation

In order to visualize the system response, the point spread
function (PSF) of the system is numerically calculated by
taking the 3D inverse Fourier transform of the CTF. Using
the measured incident spectrum and numerical aperture
of the imaging system, the complex CTF is numerically
calculated for the 63x/1.4NA objective. Through the
inverse Fourier transform, the complex PSF is calculated
and then the argument of the complex PSF is taken, since
the imaging system maps the phase shift through the object.
Figure 12a shows the CTF, or the frequency coverage of the
imaging system. In this plot, it is apparent that the coverage
of axial spatial frequency, kz , is larger at larger transverse
spatial frequency components, k⊥. This result correctly
shows that, for larger transverse spatial frequencies of the
scattered light, the optical sectioning effect is stronger.
A comparison between the calculated PSF and measured
PSF, obtained by measuring a microbead, is shown in Fig.
12b. The numerically calculated PSF gives a transverse
resolution of 350 nm and an axial resolution of 890 nm,
while the measurement shows that the actual resolution of
the system is 398 nm in the transverse dimension and 1218
nm in the axial dimension.

Further numerical calculations of the PSF in the x-z
(transverse and longitudinal) domain for various values of
NA, ranging from 0.1 to 2, are shown in Fig. 13a. As ex-
pected, at higher NAs, not only is the resolution better, but
there is also stronger optical sectioning. Figures 13b and
13c show plots of the transverse and longitudinal resolu-
tion, evaluated at the full width half maximum (FWHM), of
each calculated PSF as a function of inverse NA and inverse
NA squared, respectively.

4.4.3. Experiments

In order to get the 3D distribution of the complex scat-
tered field, a SLIM system [44] has been used. SLIM, as
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Figure 12 Coherence transfer function and resolution of a SLIM system using 63x/1.4NA objective. (a) Calculated coherent transfer
function shown in the wavevector domain. The transverse spatial frequency is cutoff by the numerical aperture (1.4) of the objective. (b)
A comparison between the calculated point spread function and the measure point spread function. (top) The transverse cross-section
of the PSF and (bottom) the axial cross-section of the PSF. The figures are adapted from reference [29] with permission.

Figure 13 PSF calculated for various values of NA. (a) The axial cross section of the PSF. (b) FWHM of the calculated PSFs in the
transverse direction as a function of inverse NA. (c) FWHM of the calculated PSFs in the longitudinal direction as a function of inverse
NA squared. The figures are adapted from reference [29] with permission.

described in Fig. 1, is based on a conventional phase con-
trast microscope, implemented with an external module
that adds four different phase shifts (0, π /2, π , 3π /2) to
the unscattered field and retrieves the quantitative phase
through the sample by combining these four frames. As
shown in Eq. (4.11b), the measurement through SLIM
can be considered as a convolution between the PSF of
the optical system and the structure of the object. There-
fore, a deconvolution process on the acquired data is
performed to reconstruct the 3D structure of the object.
Quantitative phase images from SLIM, with very low
noise level, are converted to a sparse representation. Based

on this property, WDT implements a sparse deconvolu-
tion algorithm for 3D reconstruction. In order to assess
the performance of deconvolution, the measured PSF (63
× /1.4NA) is deconvolved by the calculated PSF. The
FWHM of the PSF after the deconvolution process was
285 nm in the transverse dimension and 967 nm in the axial
dimension, which is equivalent to 1.3x decrease in FWHM.
This proves that WDT successfully models the imaging
system and increases the resolution by the deconvolution
process suggested by the theoretical explanation. In the fol-
lowing section, the 3D reconstruction results from WDT is
presented.
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Figure 14 Spiculated red blood
cell images of WDT. (a) Compari-
son of the SLIM measurement and
WDT processed image along with
an SEM image and a confocal im-
age of a similar cell. (b) 3D render-
ing of SLIM and WDT images of
the RBC. The figures are adapted
from reference [29] with permis-
sion.

4.4.4. Results

To demonstrate the capability of WDT in imaging trans-
parent 3D objects, the authors illustrated results mainly
involving unlabeled live cells. First images, taken with
WDT, show spiculated red blood cells (RBC), also known
as echinocytes. In order to reconstruct the 3D structure of
these cells, first, quantitative phase images at different z-
position were obtained using SLIM with 40 × /0.75NA
objective, and then the deconvolution process was applied
to obtain WDT images. In this case, a new PSF calcu-
lated for the 40x objective was used. One image from
each of these two stacks, SLIM measurement and WDT
reconstruction, is shown in Fig. 14a, along with an im-
age taken under scanning electron microscope (SEM) and
confocal fluorescence microscope. Finer structures are re-
vealed clearly in the WDT image compared to SLIM mea-
surement. Using these two stacks, the 3D structure of the

cell was rendered as shown in Fig. 14b. The protrusions
in the cell membrane are much more pronounced in the
WDT reconstruction, compared to the SLIM reconstruction
case, where it is undistinguishable between different spicule
structures.

Another sample of interest is Escherichia coli (E. coli)
cells. Recent studies using high-resolution fluorescence
microscopy have shown that there are subcellular local-
izations of proteins in a helical structure [190–192]. Un-
like previous studies, WDT images an E. coli cell at high
resolution with no fluorescence labeling. Figures 15a and
15b show the original measurement and the WDT pro-
cessed image, respectively. Helical subcellular structure is
clearly resolved in the WDT image as shown in the re-
construction in Fig. 15f. In Figs. 15c, 13d and 15e, dif-
ferent cross-sections, indicated in Fig. 15a and 15b, are
presented to show the resolved helical structure in all three
directions.

Figure 15 WDT of an E.coli. (a) SLIM measurement of an E.coli. (b) WDT image of the same E.coli, shown at the same frame as (a).
(c-e) cross-section of the SLIM and WDT images taken at the locations indicated in (a) and (b). (f) 3D rendering of the WDT image
showing only the bottom half of the cell in order to emphasize the helical sub-cellular structure. The figures are adapted from reference
[29] with permission.
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Figure 16 WDT of an HT-29 cell. (a) SLIM measurement of the cell, a zoomed-in cross section (top right) and a zoomed-in area
(bottom right). (b) WDT image of the same field of view as (a). (c) 3D rendering of the WDT image, false-colored based on the phase
value and morphology, showing different parts of the cell (red: nucleoli, green: nuclear membrane, blue: cell membrane). All scale bars
represent 5 µm. The figures are adapted from reference [29] with permission.

WDT can also be used to image eukaryotic cells. 3D
reconstruction of a human colon adenocarcinoma cell (HT-
29) was demonstrated by WDT using a 63 × /1.4NA ob-
jective. The cell is imaged right after mitosis, and Fig. 16a
and 16b show one z-slice of the SLIM measurement and
the WDT image. On the bottom of each image, magni-
fied transverse and axial cross-sections are shown for better
visualization the resolution enhancement by WDT. In the
WDT image, as expected, a sharper image is observed.
Figure 16c shows a false-colored 3D rendering of the WDT
stack to show different parts of the cell in 3D. Each portion
of the cell was selected first by thresholding based on the
phase values, and then refined based on the morphology.
This is a clear demonstration of the capability of WDT
in 3D imaging, granted by the quantitative phase imaging
capability.

WDT can also be extended to 4D imaging, i.e., time-
resolved tomography. Since the imaging system uses a com-
mercial phase contrast microscope, it has all the peripherals
such as environmental control and cell incubating chamber.
In addition to these accessories, the high-precision micro-
scope stage ensures the imaging to be performed at specific
positions in space without drifting or shifting over time.
With these capabilities, the technique has imaged HeLa
cells in 3D over a 24 hour period. Figure 17 shows a HeLa
cell at three different z-positions, taken from full 3D im-
ages obtained at each hour. Dynamics of the cell membrane
and also division of the cell nucleoli indicated that the cell
remained viable throughout imaging.

4.4.5. Discussion

WDT, which uses spatially coherent and temporally in-
coherent light, has been used to retrieve 3D structures of
unlabeled cells. The depth information is obtained by sim-
ply scanning the focus through the object along the optical
axis. The reconstruction algorithm requires a physical un-
derstanding of light-matter interaction between broadband
light and a weakly scattering object. WDT theory, which
generalizes Wolf’s diffraction tomography, describes this
interaction in the imaging system. WDT is a common-path,
label-free imaging system, which uses visible light, and is
highly stable for 3D imaging over days. Recently, we have
improved the hardware and software in our WDT system
to allow for faster acquisition of 3D dynamics. We envision
that WDT will become a standard 3D imaging modality in
cell biology in the future.

WDT has many advantages over other optical tomogra-
phy methods, but also has limitations. For example, due to
the use of the first-order Born approximation and white-
light source, WDT is limited to transparent (negligible
absorption) and dispersionless (refractive index is indepen-
dent of wavelength) samples.

5. Summary and outlook

In summary, we have discussed a number of 2D and 3D in-
verse scattering methods based on quantitative phase imag-
ing. By measuring the complex scattered field in QPI and

C⃝ 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org



REVIEW
ARTICLE

Laser Photonics Rev. 10, No. 1 (2016) 33

Figure 17 WDT image of a
HeLa cell imaged over 24
hours. Images at three depth
positions are shown to empha-
size the bottom of the cell, mid-
dle of the cell, and the top mem-
brane of the cell. The figures
are adapted from reference [29]
with permission.

solving the inverse scattering problem, reconstruction of
transparent structures becomes possible. In this review,
the relationship between light scattering and QPI has been
first established and demonstrated by 2D inverse scattering
methods. Recent advances in imaging speed and resolu-
tion, along with mechanical motion control in QPI, have
directly benefited the research in solving inverse scatter-
ing problems. As a result, new breakthroughs in high res-
olution tomographic imaging of transparent objects have
been achieved. Optical diffraction tomography, initially
proposed by Wolf, solved the inverse scattering problem
for coherent light sources. Recently, the theory has been
extended to temporally broadband light sources by Inter-
ferometric Synthetic Aperture Microscopy and White-light
Diffraction Tomography. These theoretical developments
have been successfully demonstrated in experiments, en-
abling high-resolution label-free 3D imaging. All of these
inverse scattering methods have been growing rapidly in
their applications towards various fields of studies, ranging
from biomedical studies to material metrology.

With the remarkable findings and advances in the past
two decades, quantitative phase imaging has already shown
its capability in studying biological samples. Its appli-
cations range from basic biological studies such as cell
growth and cell dynamics to clinical applications such as
blood screening and tissue diagnosis. We envision that the
need to visualize 3D structures noninvasively using these
powerful methods will grow rapidly in the coming years.
It has become increasingly clear that studying cells and
microenvironment in three dimensions more accurately de-
picts live tissue conditions. For example, studying cell nu-
cleus, the largest organelle in the cell, is important for un-
derstanding the whole cell functionality, especially the cell
viability. Using the 3D quantitative imaging techniques,
certain physiological quantities such as cell nucleus shape,

size, and dry mass can be determined. Recently, these pa-
rameters have been used as biophysical markers for stem
cell identification and carcinogenesis studies [193,194]. In
conclusion, the rapid expansion of the field and the ap-
plications of quantitative phase imaging and inverse scat-
tering methods indicate that the field is now approach-
ing the critical mass of being used broadly by biologists
everywhere.
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