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Large-scale phase retrieval
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The coherent interaction between an electromagnetic field
and a 3D weakly scattering medium results in a simple
Fourier transform relationship between the object’s struc-
ture and the complex scattered field1. As a result, knowledge
about the phase of the scattered field is necessary for solving
this inverse problem with a unique solution. However, in
applications, such as X-ray crystallography, typically one
only has experimental access to the amplitude of the dif-
fracted field, which results in ambiguities of the recon-
struction. This century-old challenge, known as “the phase
problem”2 motivated the development of computational
algorithms combined with a priori knowledge about the
object of interest to limit the solution space. While generally
successful, this approach sometimes led to multiple solu-
tions, i.e., different inferred object structures for the same set
of data: “Not all the guesses have been successful. This is
clear, for example, from the following: Two different struc-
tures were predicted for the mineral bixbyite, one by L.
Pauling, the other by W. H. Zachariasen. It is not known
which, if either, is correct.” (Chapter 7 in ref. 2).
In the optical regime, due to the luxury of available

coherent sources, virtually perfect lenses, and high-
resolution detectors, extracting the phase of the scattered
field from intensity measurements has been a solved pro-
blem for many decades, using off-axis3 or phase-shifting
interferometry4. In recent years, quantitative phase maps
associated with transparent biospecimens have found mul-
tiple biomedical applications5, in a rising field known as
quantitative phase imaging (QPI)6. Traditional interfero-
metric systems (e.g., Michaelson, Mach-Zehnder) are typi-
cally associated with experimental complexity, temporal
noise due to temporal instability, and spatial noise due to
laser speckles. However, recent interests in QPI have trig-
gered the development of stable, speckle-free methods that
can be used for routine biological investigations7.

Despite these experimental advances in phase retrieval,
computational algorithms have continued to develop even
for optical domain applications, mainly to afford simple
imaging systems and take advantage of the computational
power that is now readily available. Of course, this simpler
optical approach brings back the convergence problems
associated with all computational phase retrieval meth-
ods8. The study by Chang et al. 9 tackles this challenge
and provides a solution for high space-bandwidth phase
retrieval using deep learning. The authors demonstrated
that their technique holds some advantages over existing
alternatives: “Extensive simulations and experiments
validate that the technique outperforms the existing PR
algorithms with as much as 17 dB enhancement on signal-
to-noise ratio, and more than one order-of-magnitude
increased running efficiency.” At the same time, they
acknowledge remaining convergence issues that grant
further investigation: “The PNP (plug-and-play) frame-
work has a theoretical guarantee of convergence for most
real-domain tasks, such as denoising, deblurring, etc.
However, to the best of our knowledge, there is no the-
oretical proof of PNP’s convergence in the complex
domain. Further, there is also no theoretical guarantee of
convergence for the alternating projection solver that has
been widely used for ~50 years.” The authors’ correct
assertion is not a shortcoming of their computational
algorithm, but rather, it is rooted in the physics of image
formation. The intensity detected in Gabor’s in-line
holography (Chang et al. 9), or any other interferometry
experiments for that matter, simply contains too many
unknowns in a single measurement of intensity I, namely

Iðx; yÞ ¼ A1ðx; yÞeiϕ1ðx;yÞ þ A2ðx; yÞeiϕ2ðx;yÞ�
�

�
�
2 ð1Þ

where A1,2 are the unknown amplitudes and ϕ1,2 are the
unknown phases of the two interfering fields. Thus,
without prior knowledge about the object, a single
intensity measurement is simply insufficient for extracting
the phase difference ϕ2-ϕ1 of interest.
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It is likely that such fast deep learning-enabled algo-
rithms, like the ones presented by Chang et al. 9, will be
valuable in combination with optical experiments that can
solve the convergence problem. At the same time, today
there is an enormous opportunity in the biophotonics
field for boosting the resolution10 and chemical specifi-
city11 of optical systems, as well as extracting accurate
medical information from optical imaging data12–14.
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