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Abstract: Stochastic fields do not generally possess a Fourier transform. 
This makes the second-order statistics calculation very difficult, as it 
requires solving a fourth-order stochastic wave equation. This problem was 
alleviated by Wolf who introduced the coherent mode decomposition and, 
as a result, space-frequency statistics propagation of wide-sense stationary 
fields. In this paper we show that if, in addition to wide-sense stationarity, 
the fields are also wide-sense statistically homogeneous, then 
monochromatic plane waves can be used as an eigenfunction basis for the 
cross spectral density. Furthermore, the eigenvalue associated with a plane 
wave, exp[ ( )]i tω⋅ −k r , is given by the spatiotemporal power spectrum 

evaluated at the frequency (k, ω). We show that the second-order statistics 
of these fields is fully described by the spatiotemporal power spectrum, a 
real, positive function. Thus, the second-order statistics can be efficiently 
propagated in the wavevector-frequency representation using a new 
framework of deterministic signals associated with random fields. 
Analogous to the complex analytic signal representation of a field, the 
deterministic signal is a mathematical construct meant to simplify 
calculations. Specifically, the deterministic signal associated with a random 
field is defined such that it has the identical autocorrelation as the actual 
random field. Calculations for propagating spatial and temporal correlations 
are simplified greatly because one only needs to solve a deterministic wave 
equation of second order. We illustrate the power of the wavevector-
frequency representation with calculations of spatial coherence in the far 
zone of an incoherent source, as well as coherence effects induced by 
biological tissues. 
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1. Introduction 

Random field fluctuations in both space and time are due to the respective fluctuations of 
both primary and secondary sources. The discipline that studies these fluctuations is known as 
coherence theory or statistical optics [1, 2]. Besides its importance to basic science, 
coherence theory is crucial in predicting outcomes of many light experiments. For example, 
in quantitative phase imaging (QPI), we often employ spatially and temporally broadband 
light to image phase shifts associated with the imaging field [3]. Such phase shifts are 
physically meaningful only when they are defined via averages, through field cross-
correlations (see, e.g., [4]). Whenever we measure a superposition of fields (e.g., in 
interferometry) the result of the statistical average performed by the detection process is 
strongly dependent on the coherence properties of the light. Importantly, half of the 2005 
Nobel Prize in Physics was awarded to Roy Glauber “for his contribution to the quantum 
theory of optical coherence.” For a selection of Glauber’s seminal papers, see Ref [5]. 

A thermal source, such as an incandescent filament or the surface of the Sun, emits light 
in a manner that cannot be predicted with certainty. In other words, unlike in the case of a 
monochromatic plane wave, we cannot find a function f(r,t) that prescribes the field at each 
point in space and at each moment in time. Instead, we describe the source as emitting a 
random signal, s(r,t), and describe its behavior via probability distributions. 

We can gain knowledge about the random process only by repetitive measurements and 
averaging the results. This type of averaging over many realizations of a certain random 
variable is called ensemble averaging. The importance of the ensemble averaging has been 
emphasized many times by both Wolf and Glauber [1, 5–7]. For example, on page 29 of Ref 
[5], Glauber mentions “It is important to remember that this average is an ensemble average. 
To measure it, we must in principle repeat the experiment many times by using the same 
procedure for preparing the field over and over again. That may not be a very convenient 
procedure to carry out experimentally but it is the only one which represents the precise 
meaning of our calculation.” 

Calculating how field correlations behave upon propagation requires solving a stochastic 
wave equation (see Appendix), which is tedious as it involves a fourth order differential 
equation. In order to alleviate this problem, Wolf introduced the coherent mode 
decomposition (CMD) theory [8], which establishes that, for wide sense stationary fields, a 
square integrable cross-spectral density, W can be constructed from contributions of 
completely spatially coherent sources, 
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 ( ) ( ) ( ) ( )2
1 2 1 2, , , , ,n n n

n

W ω λ ω ψ ω ψ ω∗=r r r r  (1) 

where the convergence is uniform in the mean-square sense. In Eq. (1), the functions nψ  and 

scalars 2
nλ  are mutually orthogonal eigenfunctions and eigenvalues, respectively, of the 

Fredholm integral equation of W, 

 ( ) ( ) ( ) ( )3 2
1 2 1 1 2, , , , ,n n n

D

W dω ψ ω λ ω ψ ω= r r r r r  (2) 

where D is the spatial domain of interest. Since W is Hermitian and also a non-negative 
definite Hilbert-Schmidt kernel, the eigenvalues 2

nλ  are real and positive. It is important to 

emphasize that the eigenfunctions and their associated eigenvalues in Eq. (1) are unique since 
the Fredholm integral equation is evaluated within a confined region D of the source. The 
main benefit of this expansion is that each eigenfunction (mode) satisfies the deterministic 
Helmholtz equation and, thus, propagating W reduces to propagating each mode and adding 
up the results. Using CMD, Wolf developed a framework for studying partial coherence in the 
space-frequency domain [9, 10]. 

Here, we show that if, in addition to being wide-sense stationary, the fields are also wide-
sense statistically homogeneous, then W admits plane waves as eigenfunctions, i.e., we can 

write ( ) ( ), ni t
n e ωψ ω ⋅ −= k rr . Furthermore, W can be expressed as the Fourier transform of a 

real, positive function, which we refer to as the spatiotemporal power spectrum. The 
eigenvalue associated with each plane wave is the spatiotemporal power spectrum evaluated 
at the spatiotemporal frequency, (k, ω). The second order statistics is recovered in full by 
replacing the stochastic field with a deterministic field of the same power spectrum. This 
deterministic field can therefore be propagated via a second order (deterministic) wave 
equation, significantly simplifying the calculations (Section 3). This calculation gives the 
correct result when explaining coherence effects (see, e.g., optical coherence tomography [11, 
12]). 

We establish the framework for studying coherence problems in the wavevector-frequency 
representation. Propagation in the wavevector-frequency space allows us to easily compute 
second order moments of the transverse wavevector and, thus, correlation areas. We illustrate 
the power of this formalism by re-deriving the classic result of the van Cittert-Zernike 
theorem and correlation-induced spectral changes in biological tissues. 

2. Statistically homogeneous fields 

Statistical homogeneity, like stationarity, is a strong assumption since all the measurements, 
either in space or time, are finite and, technically, we never encounter such fields in practice. 
However, if the observation interval (spatial or temporal) is much larger than the 
characteristic scale of the field fluctuations (spatial and temporal correlation lengths), these 
assumptions are reasonable. For example, if we deal with spatially finite fields, such as 
beams, the assumption of homogeneity can be used provided that the spatial domain of 
interest, e.g., the size of the camera used as detector, is much larger than the coherence area at 
that plane. 

Statistical homogeneity, at least in the wide sense, requires that W  depends on 1r  and 2r  

only through the difference, 2 1−r r . Thus, we can define a function W ′  for which 

 ( ) ( )1 2 2 1, , , .W Wω ω′= −r r r r  (3) 

Next, we show that if W is both wide sense stationary and statistically homogeneous then we 
can choose plane waves as an orthonormal basis for W. The proof is as follows. We expand 
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'W  as a Fourier series, '( , ) ( ) ( , )n n
n

W cω ω ψ ω= ⋅r r  where ( ), exp[ ( )]n ni tψ ω ω= ⋅ −r k r is a 

plane wave and *( ) '( , ) ( , )n n

D

c W dω ω ψ ω=  r r r . Now, using statistical homogeneity, we can 

write Eq. (3) as: 
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 (4) 

Thus, we have a representation of W in the form of Eq. (1) where the nψ  were chosen as 

plane waves. Since we have recovered Eq. (1), we easily obtain Eq. (2) by multiplying Eq. (4) 
by ψm(r1, ω) and integrating r1 over D and using orthonormality of the basis functions: 

 
( ) ( ) ( )3 3

1 2 1 1 1 2 1 1

2

, , , ( ) ( , ) ( , ) ,

( ) ( , ).

i t
m n n n m

nD D

i t
m m

W d c e d

c e

ω

ω

ω ψ ω ω ψ ω ψ ω ψ ω

ω ψ ω

− ∗

−

 = ⋅ ⋅ ⋅ 
 

= ⋅ ⋅

 r r r r r r r r

r

(5) 

Thus, plane waves are eigenfunctions of the Fredholm integral equation of W with associated 
eigenvalues ( ) i t

mc e ωω −⋅ . Thus, 2 ( ) ( ) i t
n nc e ωλ ω ω −= ⋅  and we obtain the following key result: 

 2 1

2 *

( )
1 2 2

( ) ( ) '( , ) ( , ) '( , )

( , , )

( , ).

n

n

ii t i t
n n n

D D

i

D

n

c e W d e W e d

W e d

S

ω ωλ ω ω ω ψ ω ω

ω

ω

− ⋅− −

− ⋅ −

 
= ⋅ = ⋅ = 

 

=

≡

 



k r

k r r

r r r r r

r r r

k

 (6) 

Hence, the eigenvalues associated with the plane waves, 2
nλ , are given by the spatiotemporal 

power spectrum, S, evaluated at the temporal frequency ω  and spatial frequency nk . Note 

that all the information about W is contained in S. 
In summary, these results show: 1) that plane waves form a coherent mode decomposition 

of W, 2) that plane waves are eigenfunctions of the Fredholm integral equation of W, and 3) 
that the eigenvalues of W can be computed with the spatiotemporal power spectrum S. Note 
that there can be many other decompositions of W besides plane waves. 

3. Deterministic signal associated with a random field 

As discussed in the previous section, the second-order statistics of a fluctuating field is fully 
described by its spatiotemporal power spectrum, ( ),S ωk , a real, positive function. In this 

section, we introduce a new concept, deterministic signal associated with the random field. 
This property of power spectrum carries the same second-order statistics as the original 
stochastic field. 
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The assumed wide-sense stationarity and statistical homogeneity ensures that the spectrum 
does not change in time or space; it is a deterministic function of k and ω. Therefore, we can 
mathematically introduce a spectral amplitude, V , via a simple square root operation, 

 ( ) ( ), , ,V Sω ω=k k  (7) 

which contains full second-order statistical information about the random field fluctuations. 
Of course, V  has a Fourier transform, provided that it is modulus integrable. However, the 

fact that V  is modulus-squared integrable in the k-domain (the spatial power spectrum 

contains finite energy) does not necessarily ensure that 3V d dω < ∞ k . Here we will assume 

that V  is integrable as well and has an inverse Fourier transform. 
Therefore, a deterministic signal associated with the random field can be defined as the 

inverse Fourier transform of V , namely 

 ( ) ( ) ( ) 3, , ,i t

V

V t V e d dωω ω
∞

− − ⋅

−∞

=  
k

k rr k k  (8a) 

 ( ) ( ) ( ) 3, , .i t

V

V V t e dtdωω
∞

− ⋅

−∞

=  
r

k rk r r  (8b) 

In Eqs. (8a) and (8b), Vr is the spatial volume of interest and Vk is the 3D domain of the 
wavevector. With this definition of the deterministic signal, the fourth order stochastic wave 
equation (Eq. (36b)) can be reduced to the second order deterministic wave equation 

 ( ) ( )
2 2
0

,
, ,s

U

V
V

k

ω
ω

β
=

−
k

k


  (9) 

where UV  and sV  are the spectral amplitudes associated with the (random) source and 

propagating field, respectively. Back in the space-time domain, Eq. (9) indicates that UV  

satisfies the deterministic wave equation, i.e. 

 ( ) ( ) ( )
2

2
2 2

,1
, , .U

U s

V t
V t V t

c t

∂
∇ − =

∂
r

r r  (10) 

Comparing our original stochastic wave equation (see Appendix) with Eq. (10), it is clear that 
the only difference is replacing the source field with its deterministic signal, which in turn 
requires that we replace the stochastic propagating field with its deterministic counterpart. 

In essence, by introducing the deterministic signal, we reduced the problem of solving a 
fourth order differential equation to an ordinary (second-order) wave equation. Importantly, 
the solution of the problem must be presented in terms of the autocorrelation ΓU of VU, or its 

spectrum 
2

UV  and not by VU itself. By the method of constructing the deterministic signal VU 

associated with the random field U, we ensure their respective autocorrelation functions are 
equal, 

 .U UU U V V⊗ = ⊗  (11) 

In other words, the fictitious deterministic signal has identical second order statistics with the 
original field. 

What information about the field is missing in going from the actual random field to its 
deterministic signal representation? The answer is that the second-order statistics and, thus, 
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the deterministic signal associated with a random field, do not contain any information about 
the field’s spectral phase. Any arbitrary phase (random or deterministic), φ, used to construct 

a complex signal, ( ) ( ),, iS e φ ωω kk , has no impact whatsoever on the autocorrelation function 

of the signal. For example, a continuous-wave (CW) field of a particular spectrum, S(ω), and 
a light pulse of the same spectrum have an identical respective deterministic signal, because 
their temporal correlations are the same. Not surprisingly, both short pulses and broadband 
CW light have been successfully used for low-coherence interferometry and coherence gating 
[13]. Spatially, a focused beam and a random field distribution of the same spatial power 
spectrum, S(k), have identical spatial correlations. For this reason, a speckle (random) field 
and a focused (deterministic) field of the same spatial spectrum have the same sectioning 
capabilities [14]. Another illustration of this equivalence is encountered in microscopy. It is 
known that the size of the condenser aperture, typically filled with diffuse light, controls the 
coherence area at the sample plane. Using the deterministic signal associated with the 
incoherent field, it turns out that if the condenser aperture is filled with a plane wave, we 
obtain the same spatial correlation at the sample plane. Specifically, the coherence area at the 
sample plane is of the order of the spot that a plane wave would be focused to by the 
condenser. 

The concept of the deterministic signal associated with a random field is useful in 
simplifying the calculations for propagating second-order field correlations. Furthermore, 
propagation in the wavevector space allows us to easily compute second order moments of 
the transverse wavevector and, thus, correlation areas. Note that this simplification is not 
possible under the coherent mode decomposition [8] without assuming statistical 
homogeneity. Below we illustrate this approach by calculating the coherence area of a 
stochastic field after propagating an arbitrary distance from an extended, completely spatially 
incoherent source. Then, we derive the changes in coherence due to scattering by tissues, a 
particular type of secondary source. 

4. Propagation of field coherence 

4.1. Propagation of coherence from primary sources 

An important result in coherence theory is attributed to van Cittert and Zernike (see Section 
4.4.4. in Mandel and Wolf [1]). This result is known as the van Cittert-Zernike theorem which 
establishes the spatial autocorrelation of the field radiated in the far-zone by a completely 
incoherent source (Fig. 1). 

This result was originally formulated in terms of the mutual intensity, defined as 

 ( ) ( ) ( )1 2 1 2, , , , .J t U t U t∗=r r r r  (12) 

In Eq. (12), the angular brackets indicate ensemble averaging over a certain area of interest 
(we are interested in the field distribution in a plane, r1,2∈ℜ2). This function J describes the 
spatial similarity (autocorrelation) of the field at a given instant, t, and it has been used 
commonly in statistical optics (see, e.g., [2].). The theorem establishes a relationship between 
J at the source plane and that of the field in the far zone. Such propagation of correlations has 
been described in detail by Mandel and Wolf [1]. Here, we derive the coherence area in the 
far-zone using the concept of the deterministic signal associated with a random field, as 
follows. 
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θ
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U(r, t)

z

x

θ
kM

Source

 

Fig. 1. Field propagation from an extended source. At the observation plane, field U, contains 
the maximum spatial frequency, kM, which is set by the angle θ subtended by the source. 

Again, we assume statistically homogeneous and stationary fields (at least in the wide-
sense) such that Eq. (12) simplifies to 

 ( ) ( ) ( ), , .J U t U t∗= +ρ r r ρ  (13) 

This mutual intensity, J, is the spatiotemporal correlation function introduced in the 
Appendix, evaluated at time delay τ = 0, 

 ( ) ( ), 0 .J τ= Γ =ρ ρ  (14) 

Using the central ordinate theorem, the cross-correlation function evaluated at τ = 0 is 
equivalent to the cross spectral density integrated over all frequencies, 

 

( ) ( )

( )

, 0

, .

J

W d

τ

ω ω
∞

−∞

= Γ =

= 

ρ ρ

ρ
 (15) 

Therefore, we can obtain J(ρ) via the spatiotemporal power spectrum, S(k, ω), followed by 
the Fourier transform with respect to k and an integration over ω. 

An important problem when employing incoherent sources for QPI is to find the 
coherence area of the field at a certain distance from the source. To this end, according to the 
definition introduced in the Appendix, we must calculate the variance of the transverse wave 
vector. Here we provide a calculation of this variance directly from the wave equation. 
Specifically, we start with the deterministic wave equation, satisfied by the deterministic 
signal, VU, associated with the random field, U, 

 ( ) ( ) ( ) ( )
2

2
2 2

,1
, , , ,U

U s

V t
V t V x y t z

c t
δ

∂
∇ − =

∂
r

r  (16) 

where VU and Vs are the deterministic signals associated with the propagating field, U, and a 

planar source field, s, respectively. Therefore, ( ) 2
,U UV k Sω =  and ( ) 2

,S sV k Sω =  are the 

respective power spectra. We assume a planar source, i.e. infinitely thin along z, described in 
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Eq. (16) by δ(z). By Fourier transforming Eq. (16), we readily obtain the solution in the 
ω−k  domain [recall Eq. (9)] 

 ( ) ( )
2 2
0

,
, ,S

U

V
V

k

ω
ω

β
⊥=

−
k

k


  (17) 

where ( ),x yk k⊥ =k , 2 2 2 2
x y zk k k k= + + , and 0 / cβ ω= . Next, we represent the propagating 

field in terms of the variable z and 2 2
0 x yq k kβ= − − . Thus, using the partial fraction 

decomposition, 

 
2 2 2 2
0

1 1

1 1 1
,

2

z

z z

k q k

q q k q k

β
=

− −

 
= + − + 

 (18) 

eliminating the negative frequency (inward) term, ( )1 zq k+ , we arrive at 

 ( ) ( )
( )

,
, .

2
S

U
z

V
V

q q k

ω
ω ⊥=

−
k

k


  (19) 

By Fourier transforming with respect to kz, we obtain the field UV  as function of ⊥k  and z, 

which is known as the plane wave decomposition or Weyl’s formula (see, e.g., Section 3.2.4. 
in [1].), 

 ( ) ( ), , , .
2

iqz

U S

e
V z iV

q
ω ω⊥ ⊥= −k k   (20) 

The modulus squared on both sides in Eq. (20), yields a z-independent relation in terms of the 

respective power spectra, ( ) ( ) 2
, , ,U U zS V zω ω⊥ =k k  and ( ) ( ) 2

, , ,s s zS V zω ω⊥ =k k  

 ( ) ( )2 2
0

1
( ) , , .

4U sk S Sβ ω ω⊥ ⊥ ⊥− =k k  (21) 

If we assume that the spectrum of the observed field is centered at the origin, i.e., 0⊥ =k , 

and is isotropic, i.e., depends only on the magnitude of ⊥k , the variance can be simply 

calculated as the second moment of k⊥ ⊥= k  

 ( )
( )

( )

2 2

2

2

,

,
,

U

A

U

A

k S d

k
S d

ω
ω

ω
⊥

⊥
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⊥
⊥ ⊥

=



k

k

k k

k k
 (22) 

where A
⊥k  is the ⊥k  domain of integration. Thus, integrating Eq. (22) with respect to ⊥k , the 

variance is obtained at once 
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We consider the source as fully spatially incoherent at all frequencies ω, i.e., 

( ) ( ),s sS Sω ω⊥ =k . Full spatial incoherence simplifies Eq. (23) to 

( ) ( )2 2 2 2 2 2
0 01

k kA A

k d k k d kω β β
⊥ ⊥

⊥ ⊥ ⊥ ⊥ = − −   . Further, if we assume that the field of 

interest is in the far zone of the source, which implies that 0k β⊥ << , then we can use the first 

order Taylor expansion in terms of 0/k β⊥ , namely 2 2 2 2 2
0 0 01 / ( ) (1 / ) /k kβ β β⊥ ⊥− ≈ + . Finally, 

the finite size of the source limits the spatial frequency in the far field by introducing a 

maximum value of k⊥ , say Mk  (see Fig. 1), such that 2 22 M

A A

d kdk kπ π
⊥ ⊥

⊥ = = 
k k

k . Under 

these circumstances, Eq. (23) simplifies to 
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/ 2,
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k
k

k
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 
= − + 
≈

 (24) 

where we employed a Taylor expansion a second time. The maximum transverse wavevector 
can be expressed in terms of the half-angle subtended by the source, θ, because 

0 sinMk β θ= . Thus, the coherence area of the observed field is 

 

2

2

1 /

2
,

cA k

λ
π

⊥=

=
Ω

 (25) 

where Ω is the solid angle subtended by the source from the plane of observation, 
24 sinπ θΩ = . 

This simple calculation captures the power of using deterministic signals associated with 
random fields as a means to reduce the coherence propagation equation from fourth-order in 
correlations to second-order in fields. Specifically, by taking the power spectrum of the 
solution, we were able to directly calculate the second moment of the transverse wavevector 
and implicitly obtain an expression for the spatial coherence of the propagating field. 
Equation (25) illustrates the remarkable result that, upon propagation, the field gains spatial 
coherence. In other words, the free-space propagation acts as a spatial low-pass filter. The 
farther the distance from the source, the smaller the solid angle Ω and, thus, the larger the 
coherence area. 

4.2. Propagation of coherence from secondary sources 

The concept of the deterministic signal associated with a random field can also be used to 
describe light propagation in inhomogeneous media, i.e., light propagation from a secondary 
source. Starting with the deterministic Helmholtz equation, the secondary source term can be 
separated to the right hand side. 
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where 0 / cβ ω= , 0 ( )nβ β=
r

r , and 
22( ) ( ) ( )n nχ = −
r

r r r  is the dielectric susceptibility. 

Taking the spatial Fourier transform and separating the variables, the deterministic field 
propagation can be expressed in terms of the convolution of the secondary source and the 
initial incident deterministic field, 
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 (27) 

where kⓥ  indicates a 3D convolution in the k-domain. Considering only the positive spatial 

frequency component associated with zq k− , and taking the inverse Fourier transform in zk , 

the scattered deterministic field is, 

 
2
0( , , ) ( , ) ( , , ) ,

2

iqz

U z s

e
V z z V z

q

βω χ ω⊥ ⊥ ⊥ ⊥ = −  k k k ⓥ ⓥ  (28) 

where zⓥ  indicates convolution along z and ⊥ⓥ  the 2D convolution along the transverse k-

vector, ( xk , yk ). The result can be simplified noting that the convolution of a function, f(z), 

with a complex exponential yields a simple result, namely, ( ) ( )iqz iqz
ze f z e f q= ⓥ , with ( )f q  

the Fourier transform of ( )f z . Thus, Eq. (28) becomes 

 
2
0( , , ) ( ) ( , ) .

2 z

iqz

U s k q

e
V z V

q

βω χ ω⊥ =
 = −  kk k k  ⓥ  (29) 

This is a remarkably simple result, which can be regarded as the first order Born 
scattering solution for an arbitrary illumination field. Equation (29) allows us to calculate, at 
any plane z, the power spectrum of the scattered field, which equals that of the respective 

deterministic signal, 
2

( , )UV ω⊥k , as a function of the illumination spectrum, 
2

( , )sV ω⊥k , 

and the scattering potential, χ . Once we know the power spectrum, the frequency variances 

can be evaluated directly as well. We illustrate these calculations by studying spatial and 
temporal coherence changes induced by scattering by biological tissues. 

In order to demonstrate the change in field correlations due to tissue, we used spatial light 
interference microscopy (SLIM) to obtain quantitative phase images of a tissue slice. SLIM 
provides the quantitative information about the optical path-length induced by the sample 
with 0.3 nm spatial sensitivity [15]. By measuring the scattered light (Fig. 2(b)), the phase 
shift at each point is mapped to an image, as shown in Fig. 2(a). Figure 2(c) shows the spatial 
correlation function with respect to ⊥k , which is obtained directly by taking the radial profile 

on the 2D Fourier transform of the image in Fig. 2(a). 
The coherence properties of the light scattered from the same tissue is calculated using 

Eq. (29). In order to express the result in terms of the scattering angle, θ, we simply make the 

substitutions 0 sink β θ⊥ =  and ( )1/22 2
0 0 cosq kβ β θ⊥= − = . Thus, we can express the 

spectrum with respect to the scattering angle, namely, 
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We study the spectral width of the scattered field with respect to the scattering angle. Based 
on the reciprocal relationship between the spectral linewidth and coherence time, 1τ ωΔ Δ ≈ , 
the coherence properties can be investigated. We define the width of the spectrum by its 
variance, 

 

Fig. 2. (a) The optical path-length map of a tissue biopsy sample, imaged with SLIM using a 
40X objective with 0.75 NA. A close-up of the sample is shown on the right as a 
demonstration of the imaging ability (quantitative and high-resolution). (b) The scattering 
geometry for this experiment. (c) The spectrum measured from sample shown in (a) through 
2D Fourier transform and radial averaging. (d) Normalized optical spectrum for light 
propagated after the tissue. (e) The variation of effective spectral width of the angular 
spectrum. 

 ( )
2

2 0( ) ( , )
.

( , )

U

U

S d

S d

ω ω θ ω ω
ω θ

θ ω ω

−
Δ = 


 (31) 

Assuming a Gaussian incident field spectrum centered at 7 11.3 10 rad m−× ⋅  with standard 

deviation of 6 12 10 rad m−× ⋅ , Eqs. (30) and (31) yield the spectrum at each scattering angle 
and also the spectral bandwidth at each scattering angle. In Fig. 2(d), the resulting normalized 
spectrum of the calculation from Eq. (30) is shown with respect to the scattering angle. We 
can see a redshift in higher scattering angles due to the spatial correlation of the source as it is 
discussed in our previous paper [16]. Further, Fig. 2(e) shows the effective spectral width of 
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the angular spectrum that indicates the change of coherence time through a biological tissue 
with respect to the scattering angle. 

5. Summary and discussion 

We presented a new formalism for calculating propagation of field correlations using the 
wavevector-frequency representation of optical fields. The main points of this paper are as 
follows. 1) We first represent the coherence mode decomposition (CMD) in the wave-vector 
domain to prove that the plane waves can be used as an eigenfunction basis of the cross 
spectral density associated with statistically homogeneous fields. 2) We introduced the 
concept of a deterministic signal associated with a random field and showed that it 
significantly simplifies calculations of second order correlations. 3) We described spatial and 
temporal coherence in terms of the second order statistics (variance) of the spatial and 
temporal power spectra. Thus, for an arbitrary stochastic field, we can define a temporal 
bandwidth and coherence time for each spatial frequency (wavevector k) component and, 
vice versa, a spatial correlation for each temporal frequency ω. 4) We reviewed the stochastic 
wave equation in the Appendix and, for wide-sense stationary and statistically homogeneous 
fields, we solved this equation in the (k, ω) domain. Essentially, fourth order differential 
equations in field correlations can be replaced by second order differential equations for 
deterministic signals, which are defined via a Fourier transform of the spectral amplitude. 
These signals do not contain information about the spectral phase associated with the field. 
For example, the deterministic signal representation cannot make the distinction between a 
focused beam and a speckle field distribution with the same spatial bandwidth, or a light pulse 
versus a continuous wave field of the same temporal bandwidth. Therefore, it is important to 
note that the deterministic signal solution should only be used to generate the power spectrum 
(or autocorrelation) of the propagating field. From this power spectrum, first order (mean 
frequency) and second order (variance) statistics can be calculated both spatially and 
temporally, i.e., one can study how coherence changes upon propagation. 5) In Section 4, we 
applied the deterministic signal associated with a random field to derive a well-known result 
of the van Cittert-Zernike’s theorem, e.g., the field emitted by a spatially incoherent source 
gains coherence upon propagation. First we established that the mutual intensity, a quantity 
that is traditionally used for describing spatial coherence in a plane, is merely the frequency 
averaged cross-spectral density. This result allows us to easily calculate propagation of field 
correlations directly in the frequency (k, ω) domain. 6) If one is only interested to know the 
spatial and temporal variances, as measures of spatial and temporal coherence, we show that 
this second order statistics can be calculated straight from the wave equation in the frequency 
domain [e.g., Eq. (29)]. We illustrated this approach with correlations of fields propagating 
from primary and secondary sources. 

Experimentally, we only have access to field correlations and not the fields themselves. 
Our results indicate that, for statistically translation-invariant fields, the deterministic signals 
give the same results as the actual (stochastic) fields. This explains why theoretical 
descriptions of interferometric experiments can yield the correct results even when 
randomness is ignored. 

Appendix 

A1. Stochastic wave equation 

Here we review the propagation of field correlations from an arbitrary source that emits a 
random field s. We start with the scalar wave equation that has this random source as the 
driving term, 

 ( ) ( ) ( )
2

2
2 2

,1
, , .

U t
U t s t

c t

∂
∇ − =

∂
r

r r  (32) 
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The random source signal, s, as introduced in Section A1, can be regarded as a realization of 
the fluctuating source field (U is the complex analytic signal associated with the real 
propagating field). For generality, here we consider a 3D spatial field distribution, 

( ), ,x y z=r . 

Because Eq. (32) has a stochastic (random) driving term, it is referred to as a stochastic 
differential equation. Notoriously, Langevin introduced such an equation (the Langevin 
equation) to describe Brownian motion of particles [20]. The key difference with respect to 
the deterministic wave equation is that the field s in Eq. (32) does not have a prescribed form, 
i.e., we cannot express the source field via an analytic function. Instead, it is known only 
through average quantities, e.g. the autocorrelation function or, equivalently, the power 
spectrum. According to the focus of this paper, we assume the source field to be stationary 
and statistically homogeneous at least in the wide sense. 

We use the stochastic wave equation, Eq. (32), to solve for the autocorrelation of U and 
not U itself. In order to achieve this, we calculate the spatiotemporal autocorrelation of Eq. 
(32) on both sides (see, Section 4.4. in Mandel and Wolf [1]) 
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 (33) 

where the angular brackets indicate ensemble averaging, 2
1∇  is the Laplacian with respect to 

coordinate r, 2
2∇ with respect to coordinate +r ρ , and Γs is the spatiotemporal autocorrelation 

function of s. Since we assumed wide sense stationarity and statistical homogeneity, which 
gives Γs dependence only on the differences ρ and τ, all the derivatives in Eq. (33) can be 
taken with respect to the shifts, i.e. (see pp. 194 in Ref [1].) 
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22 2
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ρ ρ ρ

ττ
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∂ ∂ ∂
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 (34) 

After these simplifications, Eq. (33) can be re-written as 

 ( ) ( )2 2
2 2 2 2

1 1
, ,U sc c
τ τ

τ τ
∂ ∂   ∇ − ∇ − Γ = Γ   ∂ ∂   

ρ ρ  (35) 

where ΓU is the spatiotemporal autocorrelation of U, ( ) ( ) ( ), , ,U U t U tτ τ∗Γ = + +ρ r r ρ . 

Eq. (35) is a fourth order differential equation that relates the autocorrelation of the 
propagating field, U, with that of the source, s. From the Wiener-Khintchine theorem, we 
know that both ΓU and Γs have Fourier transforms, which are their respective power spectra, 
SU and Ss. Therefore, we can solve this differential equation by Fourier transforming it with 
respect to both ρ and τ, 

 ( ) ( ) ( ) ( )2 2 2 2
0 0 , , ,U sk k S Sβ β ω ω− − =k k  (36a) 
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In Eq. (36a), we used the differentiation property of the Fourier transform, i∇ → k , 

iω
τ
∂ → −

∂
. Equation (36b) gives an expression, in the ω−k  representation, for the spectrum 

of the propagating field, SU, with respect to the spectrum of the source, Ss. Note that here the 

function ( ) 22 2
0 kβ

−
−  is a filter function (transfer function), which incorporates all the effects 

of free space propagation. Because the free space is isotropic, the transfer function is also 
isotropic, i.e., it depends only on the magnitude of the wavevector, k = k , and not its 

direction. 

A2. Coherence time and area 

Let us consider the fluctuations of a field observed at a given plane. The coherence time, τc, 
and coherence area, Ac, describe the spread (standard deviation) of the autocorrelation 
function, ( ),τΛ ρ , in τ and ρ, respectively. Due to the uncertainty relation, τc and Ac are 

inversely proportional to the bandwidths of their respective power spectra, 
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where 
2

2
, , ,x y x y x yk k kΔ = −  is the variance of the components of the transverse 

wavevector, ( ),x yk k⊥ =k , and ,x yk  their respective averages. Note that in this definition, 

we assume that the statistical properties of the field are isotropic, meaning that the spatial 
coherence at a plane is characterized by a scalar function, Ac. If this is not the case, i.e., when 
the field statistics depends on direction, the coherence area is no longer sufficient and the 

concept must be generalized to a tensor quantity, of the form, ( ), 1 / , , 1,2i j i jA k k i j= Δ Δ = . 

The variances, 2ωΔ  and 2
xkΔ  (similarly, 2

ykΔ ) are calculated explicitly using the 

normalized power spectra as probability densities, namely 
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 (38a) 
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Clearly, the temporal bandwidth ( ) ( )2ω ω⊥ ⊥Δ = Δk k  depends on the spatial frequency 

⊥k . The physical meaning of a ⊥k -dependent coherence time is that each plane wave 
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component of the field can have a specific temporal correlation and, thus, coherence time, 

( ) ( )1/cτ ω⊥ ⊥= Δk k . Conversely, each monochromatic component can have a particular 

spatial correlation and, thus, coherence area, ( ) ( )21 /cA kω ω= Δ . 

The two variances can be further averaged with respect to these variables, such that they 
become constant, 
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Equation (39a) yields a coherence time, 21 /cτ ω= Δ , that is averaged over all spatial 

frequencies, while Eq. (39b) provides a coherence area, 21 /cA k⊥= Δ , which is averaged 

over all temporal frequencies. In practice, we always deal with fields that fluctuate in both 
time and space, but rarely do we specify τc as a function of k or vice-versa; we implicitly 
assume averaging of the form in Eq. (39a) and (39b). 
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