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We derive two mathematical relations between quantitative phase images of thin slices of inhomogeneous media
and the scattering parameters of the bulk, i.e., scattering mean free path, ls, and anisotropy factor, g. The ls turns out
to be inversely proportional to the spatial variance of the phase shift, and g is related to the variance of the phase
gradient. These formulas, referred collectively to as the scattering-phase theorem, allow for extracting ls and g in a
spatially resolvedmanner and across an entire tissue section, that is, mapping large cross sections of tissues in terms
of ls and g. © 2011 Optical Society of America
OCIS codes: 290.5825, 290.5820, 180.3170.

Light–tissue interaction can be modeled by a radiative
transport equation, in analogy to the problem of neutron
transport in nuclear reactors [1]. With further simplifying
assumptions, a diffusion model can be applied to de-
scribe the steady-state [2] and time-resolved [3] light
transport in tissues. The refractive index of biological
structures has been modeled in the past both as discrete
particle distribution [4] and continuous or fractal [5].
Light propagation in bulk tissue is described by two

statistical parameters: the scattering mean free path, ls,
which provides the characteristic length scale of the
scattering process, and the anisotropy factor, g, which
scales ls to higher values, lt ¼ ls=ð1 − gÞ, to account for
forward scattering. This new quantity, lt, is called the
transport mean free path and approaches ls as the indi-
vidual scattering becomes isotropic (g → 0). The physi-
cal meaning of lt (and its asymptotic limit, ls) is the
distance after which the direction of propagation is
randomized. The direct measurement of these scattering
parameters is extremely challenging, and, therefore,
often simulations, e.g., Monte Carlo [6] or finite differ-
ence time domain [7], are used iteratively instead.
Fourier transform light scattering (FTLS) has been

developed as the spatial analog of Fourier transform
spectroscopy to provide angular scattering information
from phase-sensitive measurements [8]. Thus, FTLS
was used to measure ls from angular scattering of tissue
slices, and the anisotropy parameter gwas determined by
fitting the scattering pattern with Gegenbauer Kernel
phase function [9].
In this Letter, we show that quantitative phase imaging

of thin slices can be used to spatially map the tissue
in terms of its scattering properties. Specifically, we
establish mathematical relations between the phase
map ϕðx; yÞ associated with a tissue slice of thickness
L ≪ ls (see Fig. 1) and scattering parameters of the bulk,
i.e., ls and g. First, we show that the scattering mean
free path ls averaged over a certain area across a tissue
slice is directly related to the mean-squared phase
(variance of the phase) within that region. Second, we
prove that the anisotropy factor g relates to the phase
gradient distribution. These relations, which we refer
collectively to as the scattering-phase theorem, are
expressed as

ls ¼
L

hΔϕ2ðrÞir
; ð1aÞ

g ¼ 1 −

�
ls
L

�
2 hj∇½ϕðrÞ�j2ir

2k02
: ð1bÞ

In Eqs. (1a) and (1b), L is the tissue slice thickness,
hΔϕ2ðrÞir ¼ h½ϕðrÞ − hϕðrÞir�2ir is the spatial variance
of ϕ, with hir denoting spatial average, r ¼ ðx; yÞ,
k0 ¼ 2πn0=λ, with λ the (average) wavelength of light
in the medium, n0 is the average refractive index of
the tissue, and j∇½ϕðrÞ�j2 ¼ ð∂ϕ=∂xÞ2 þ ð∂ϕ=∂yÞ2.

The starting point in proving the ls–ϕ relationship
[Eq. (1a)] is the definition of ls as the characteristic length
in the medium over which the irradiance I00 of the unscat-
tered (or ballistic) light drops to 1=e of the original value
I0, i.e., the Lambert–Beer’s law,

I00 ¼ I0e−L=ls : ð2Þ
In Eq. (2), I0 ¼ jU0j2 and I00 ¼ jU0

0j2, whereU0 andU0
0

represent, respectively, the incident plane wave and
the unscattered field that passed through the slice, as
illustrated in Fig. 1. Throughout the derivations, we
ignore the effects of absorption. The field after the tissue
slice, U 00, carries information about the spatial phase dis-
tribution, ϕðrÞ, which is available for measurement via
quantitative phase imaging, U 0ðrÞ ¼ U0 · eiϕðrÞ. Note that,
here, we focus on phase objects (i.e., U0 constant) rele-
vant for unstained tissue measurements. The transmitted
field can be expressed as the superposition between the
scattered and unscattered components,

U 0ðrÞ ¼ U0
0 þ U1

0ðrÞ: ð3Þ
Note that U0

0 is the zero-frequency (unscattered, bal-
listic) component of U 0 and U1

0 is the sum of all high-
frequency field components. Therefore, U0

0 can be
expressed as the spatial average of U 0,

U0
0 ¼ hU0 · eiϕðrÞir: ð4Þ
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For a normal distribution of phase shifts, where the
probability density is a Gaussian function of the form
exp½−ϕ2=2hΔϕ2ir�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhΔϕ2ir

p
, the average in Eq. (4)

is readily performed as

U0
0 ¼ U0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðΔϕÞ2
p

Z
∞

−∞

eiϕe
−

ϕ2

2hΔϕ2irdϕ ¼ U0e−
hΔϕ2ir

2 : ð5Þ

In Eq. (5), hΔϕ2ir is the variance associated with the
phase shift distribution. Since jU0

0=U0j2 ¼ I00=I0, com-
bining Eqs. (2) and (5) yields the expression of the
scattering mean free path,

ls ¼
L

hΔϕ2ðrÞir
: ð6Þ

The assumption of Gaussian statistics provides the
analytic formula in Eq. (6), which is simple and insightful
at the same time. However, we note that the average in
Eq. (4) can be calculated numerically for any non-
Gaussian distribution of phase shifts, as long as the
quantitative phase image is known. Further, it can be
shown that the same result is obtained via the Tailor
expansion of Eq. (4) to the second order, U0

0=U0≃

eihϕðrÞirð1 − h½ΔϕðrÞ�2ir=2Þ. For the zero-average signal,
we obtain jU0

0=U0j2 ≃ e−h½ΔϕðrÞ�2ir , which equals the
Lambert–Beer’s law in Eq. (2) and, thus, yields Eq. (6).
Note that the small phase shift approximation is a stron-
ger assumption than the Gaussian distribution. By per-
forming the Taylor expansion to the second order, we
approximate an arbitrary distribution, including a Gaus-
sian, with a parabola. Around the origin, all distributions
look like a Gaussian, which is the underlying origin of the
central ordinate theorem. Therefore, the assumption of
normally distributed phase values is more inclusive, as

it covers the small values, where all distributions work,
as a particular case.

To prove the g–ϕ relationship, by definition, g repre-
sents the average cosine of the scattering angle for a sin-
gle scattering event. Recently, we have extended this
concept to continuous distributions of scattering media,
such as tissues [9]. We showed that, since ls also means
the distance over which, on average, light scatters once, g
can be defined by the average cosine of the field trans-
mitted through a slice of thickness ls,

g ¼ hcos θiθ: ð7Þ
As illustrated in Fig. 1(b), the scattering angle connects

the incident wave vector k0, the scattered wave vector ks,

and the momentum transfer, q ¼ ks − k0, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2 þ qy2

q
,

as

cos θ ¼ 1 −
q2

2k02
; q ¼ 2k0 sin

θ
2
: ð8Þ

Combining Eqs. (7) and (8), we can express the average
cosine as

g ¼ 1 −
1

2k02

ZZ
ðqx2 þ qy2ÞPðqx; qyÞdqxdqy: ð9Þ

In Eq. (9), Pðqx; qyÞ is the angular scattering probability
distribution, which has the form

Pðqx; qyÞ ¼
j~U 0ðqx; qyÞj2RR j~U 0ðqx; qyÞj2dqxdqy

: ð10Þ

Inserting Eq. (10) into Eq. (9), we have

g ¼ 1 −
1

2k02

RR ½jiqxU 0ðqx; qyÞj2 þ jiqyU 0ðqx; qyÞj2�dqxdqyRR j~U 0ðqx; qyÞj2dqxdqy
:

ð11Þ
Using Parseval’s theorem followed by the differentiation
theorem [10], we obtain

ZZ
jiqαU 0ðqx; qyÞj2dqxdqy ¼

ZZ
j∂U 0ðx; yÞ=∂αj2dxdy;

ð12Þ
where α ¼ x; y. Combining Eqs. (12) and (11), we can
write

g ¼ 1 −
hj∇½ϕlsðrÞ�j2ir

2k02
; ð13Þ

where hj∇½ϕlsðrÞ�j2ir ≡
R j∇ϕðrÞj2d2r= R d2r is the aver-

aged gradient intensity over the area, i.e., the variance
of the gradient. Equation (13) expresses the relationship
between g and the gradient of the phase shift distribution
through a slice of thickness ls. If the phase image, ϕðrÞ, is
obtained over a thickness L, with L ≪ ls, then
ϕls ¼ ϕ ls=L. Thus, the anisotropy factor depends on
the measurable phase image as

Fig. 1. (Color online) Light scattering by a thin tissue slice.
(a) U0, incident field; U0

0, unscattered component of the trans-
mitted field; L, thickness of the tissue slice; ls, scattering mean
free path; k0, incident wave vector. (b) ks, scattering wave
vector; q, momentum transfer; θ, scattering angle. (c) Position
vector in the phase image.
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g ¼ 1 −

�
ls
L

�
2 hj∇½ϕðrÞ�j2ir

2k02
: ð14Þ

The ls=L factor is related to the phase variance via
Eq. (1a) such that Eq. (14) can also be expressed as

g ¼ 1 −
1

2k02
hj∇½ϕðrÞ�j2ir
hΔϕ2ðrÞi2r

: ð15Þ

In summary, the scattering-phase theorem connects
the phase image of a thin tissue slice to the scattering
properties of the tissue. Note that the tissue can be
mapped in terms of ls and g values that are averaged over
patches of area S. While this remarkable result may seem
counterintuitive, its physical interpretation is straightfor-
ward, as follows. The ls–ϕ relationship simply establishes
that the attenuation due to scattering is stronger (ls short-
er) as the tissue roughness (variance) is larger, i.e., the
more inhomogeneous the tissue, the stronger the scat-
tering. For homogeneous tissue, i.e., zero variance, ls be-
comes infinite, which indicates the absence of scattering.
On the other hand, the g–ϕ formula contains the gradient
of the phase. Generally, a phase gradient relates to a tilt
in the direction of propagation. The presence of the
modulus squared of the gradient (or gradient intensity)
indicates that the angular average is intensity based
rather than field based. Thus, the higher the gradient
variance, the higher the probability for large scattering
angles, i.e., the smaller the g value [Eq. (14)]. In essence,
a thin tissue slice can be assimilated with a (complicated)
phase grating, which is characterized by a certain diffrac-
tion efficiency (controlled by ls) and average diffraction
angle (controlled by g).
We propose quantitative phase imaging as a direct

method for extracting ls and g, which is likely to have
a significant impact in optical diagnosis. The ls values
are typically in the tens of micrometers and the biopsy
slices in the 3–5 μm range, i.e., L ≪ ls, which is clearly
within the applicability range of our theorem. Note that
the amplitude (bright field) image can inform about the
absorption in tissue, which may be useful in studying
stained biopsies. In the experimental report that accom-

panies this Letter, we demonstrate this idea by mapping
the scattering properties of tissues over broad spatial
scales and also discuss the effects of the limited numer-
ical aperture of the imaging optics [11]. Virtually all scat-
tering methods of diagnosis operate on the principle that
diseases, especially cancer, affect the architecture and,
as a result, the scattering properties of tissues. We envi-
sion that our approach will facilitate building a large da-
tabase, where various tissue types, healthy and diseased,
are fully characterized in terms of their scattering param-
eters. These measurements will provide direct evidence
as to whether a certain disease produces measurable
effects in terms of light scattering, and, perhaps, will help
determine which method is best suited for diagnosis.
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