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Abstract: We present an imaging method, dSLIM, that combines a novel
deconvolution algorithm with spatial light interference microscopy (SLIM),
to achieve 2.3x resolution enhancement with respect to the diffraction limit.
By exploiting the sparsity of the phase images, which is prominent in many
biological imaging applications, and modeling of the image formation
via complex fields, the very fine structures can be recovered which were
blurred by the optics. With experiments on SLIM images, we demonstrate
that significant improvements in spatial resolution can be obtained by the
proposed approach. Moreover, the resolution improvement leads to higher
accuracy in monitoring dynamic activity over time. Experiments with
primary brain cells, i.e. neurons and glial cells, reveal new subdiffraction
structures and motions. This new information can be used for studying vesi-
cle transport in neurons, which may shed light on dynamic cell functioning.
Finally, the method is flexible to incorporate a wide range of image models
for different applications and can be utilized for al imaging modalities
acquiring complex field images.

© 2011 Optical Society of America

OCI S codes: (110.0180) Microscopy; (100.1830) Deconvolution; (100.5070) Phase retrieval;
(100.6640) Superresolution.
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1. Introduction

Classical light microscopy techniques cannot be used directly inimaging most biological struc-
tures, as they do not significantly absorb or scatter light [1]. Interference-based methods such
as phase contrast [2] and differential interference contrast microscopy [3] allowsimaging these
transparent structures without the need for staining or tagging. Recently, more advanced meth-
ods introduced the ability to measure quantitative information on the specimen by precisely
quantifying optical phase shiftsinduced by the structure and motion of the specimen [4]. Spatial
light interference microscopy (SLIM) [5], isanew and powerful quantitative imaging technique
which alows high phase sensitivity imaging of nanoscale structures. SLIM has the important
advantages of utilizing illumination with short-coherence length, and the ease of implementa-
tion via add-on modules on existing phase-contrast microscopes.

Although interference-based microscopy has tremendous advantages, it is still affected by
the optical degradation and noise introduced by the instrument [6]. These degradations can be
removed to a certain extent by employing post-processing methods. Deconvolution is a com-
mon postprocessing method to invert the optical transfer function of the instrument. Although
itiswidely used in intensity-based microscopy [7—11], not much work has been reported on de-
convolution in microscopy systems collecting quantitative information through complex fields.
The work in [12] investigated the use of complex field deconvolution through inverse filtering
in digital holographic microscopy [13], and have reported that the noise amplification, com-
monly encountered with inverse filtering in intensity-imaging, is not as significant in the case
of complex field microscopy. A nonlinear deconvolution method has been developed in [14]
for SLIM that estimates the unknown magnitude and phase fields via a combination of variable
projection and quadratic regularization on the phase component.

In this paper, we present a novel method, dubbed dSLIM, for complex field deconvolution
using an image model suitable for characterizing the fine scale structures. Based on the promi-
nent features of phase images, we model the underlying image using the sparsity properties
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of the transform coefficients. This model is especially useful in capturing fine-scal e structures,
and it successfully reveals the details in the phase components lost due to the instruments op-
tical transfer function. In addition, due to the very low noise floor provided by SLIM (0.3 nm
gpatially and 0.03 nm temporally [5]), accurate experimental estimates of the point spread func-
tion can be obtained, and deconvolution artifacts are significantly reduced. We demonstrate that
resolution increases by a factor of 2.3 can be achieved with dSLIM. Thus, in dSLIM, images
with afinal resolution of 238nm can be rendered with only a 0.65NA objective. Moreover, the
presented methodology is very flexible in incorporating image properties in awide range of ap-
plications (such as materialsimaging) and can also be utilized for other interference microscopy
techniques.

The rest of this paper is organized as follows. We provide an overview of SLIM in Section 2.
The image degradation model and the general framework for complex deconvolution is pre-
sented in Section 3. The proposed deconvolution algorithm dSLIM is developed in Section 4.
We present experiments with SLIM images in Section 5 and conclude in Section 6.

We use the following notation throughout the paper: Bold lettersh and H denote vectors and
matrices, respectively, with transposes h™ and H'. The spatial coordinates within a image are
denoted by (x,y), operator * denotes convolution, and i isequal to v/—1. Finally, {-} isused to
denote a set created with its argument.

2. Overview of Spatial Light Interference Microscopy (SLIM)

In SLIM [5], aspatially coherent light source, U (x,y) = |U (X,y)| exp[i®(x,Y)], is used for illu-
mination, which is decomposed into scattered and unscattered fiel ds after passing the specimen.
Let us denote the unscattered light as Up and the scattered light as U1(x,y). A liquid crystal
phase modulator (LCPM) is used to introduce phase modulations to the unscattered field, such
that

Uo = |Uo| exp[—igo], €y
U1(x,y) = [U1(X,y)| expliga(x,y)], )

where ¢p is the intentionally added phase delay, and ¢1(x,y) is the phase difference between
the scattered and unscattered fields caused by the specimen. The unscattered field contains the
uniform background of the image field, whereas the scattered light provides information on the
structure of the specimen. The recorded intensity is expressed as

(XY, 90) = [Uo|? + U1(xY)|? +2|Uol [U1(x,y)| cos(@1(x.Y) + o) - ©)

Intraditional phase-contrast microscopy [2], ¢o isfixed at 7 and asingleimageisacquired. This
can only provide qualitativeinformation (i.e., ¢1(X,y) cannot be uniquely retrieved). In contrast,
SLIM uses multiple phase delays O, 7, &, and 37” such that ¢ can be uniquely determined.
Specifically, ¢1 can be extracted from the four recordings using

_ I(X7y7—%)7l(xay7%)
o) =aaan | e @
Moreover, the phase associated with the complex field can be calculated by
m(x,y) sin(¢1(x,y)) }
®(x,y) = arctan . , 5
by Trmeathe) ©
where we define by m(x,y) = % the ratio of magnitudes of the scattered and unscattered

light.
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3. Image formation and deconvolution model

As demonstrated in the previous section, both the magnitude and phase of the complex im-
age function U (x,y) = |U(x,y)| exp[i®(X,y)] can be uniquely determined using SLIM (using
Egs. (3) and (5)). However, asin all imaging systems, only a degraded version of thisfield can
be observed in practice. Modeling the imaging process as a linear, spatially invariant degrada-
tion system, the measured image can be expressed as the convolution of the original complex
field with the instrument point spread function (PSF) as

U(xy) =U(xy) «h(xy) +n(x.y), (6)

where h(x,y) is the PSF of the system, and n(x,y) is the additive signal independent noise.
In general, both the magnitude and phase of the complex image function is degraded via the
optica transfer function. As in traditional deconvolution [10], these fields can be estimated
using aregularized inverse formulation

O x|, B(xy) = (af%ml(n)z 5 [1006y) =U(xy) xh(x.y) | +BR(U (x.Y)|, (x.Y)),
xy),®
@)

where o2 is the noise variance, and the functional R(-) is used to regularize and impose con-
straints on the estimates of the magnitude and phase.

The estimation of both the magnitude and phase in Eq. (7) is anonlinear optimization prob-
lem, which is highly ill-posed and hard to solve in practice. However, in practice, the degrada-
tion in the magnitude is very small compared to the degradation in the phase [12]. In addition,
the phase image contains most of the information of the specimen relevant and useful from an
application point of view. Therefore, it is convenient to assume that the magnitude of the field
is constant, and the imaging system introduces negligible distortion in the magnitude, such that
|U (x,y)| = |U(x,y)| = const. This assumption makes the problem in Eq. (7) linear, and itisalso
very useful in avoiding instabilities due to nonlinearity. With this approximation, the problem
Eqg. (7) becomes

d(xy) = argmin | exp[id(x,y)] —h(x.y) «expli®(x.y)] |* +BR®(xY)).  (8)

|
<>22

For mathematical convenience and clarity, let us denote by g(x,y) the observed field
exp [i®(x,y)], and by f(x,y) the unknown field exp [i®(x,y)]. Dueto the linearity of the degra-
dation, the problem Eq. (8) can be expressed equivalently in matrix vector form as

= agmin 5 || g —Hf 12 +BR(f), )

22‘

where g and f are images g(x,y) and f(x,y) in vector forms, respectively, and H is the convo-
lution matrix corresponding to the PSF h(x,y). A

When no regularization is used in Eq. (9), the closed-form solution of f can be found as
(HTH)*1 HTg (equivalent to the inversefilter). However, this approach generally leads to noise
amplification and ringing artifacts due to heavy suppression of high spatial frequencies. Therole
of regularization isto impose desired characteristics on the image estimates to avoid this noise
amplification and to increase the resolution. The parameter 3 is used to control the trade-off
between the data-fidelity and the smoothness of the estimates.
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Fig. 1. Contourletsin (a) horizontal and (b) vertical directions.

4. Complex field deconvolution using sparsity
4.1. Image model

It is well-known that phase-contrast imaging is highly sensitive to object boundaries but rela-
tively insensitive to the flat background areas. Due to this characteristic, phase images exhibit
high contrast around edges and local spatial variations within the specimen, which allows the
capture of accurate shape and edge information. Moreover, in many important applications
where interference microscopy is utilized, e.g., live cell imaging, the specimen contains very
fine structures and small-scale movements that need to be precisely localized.

Based on these observations, our goal isto construct amodel of phaseimages that accurately
represents this fine structure with sharp boundaries. We base our modeling on the sparsity
principle, that is, our main assumption is that the phase images can be very accurately repre-
sented in some transform domain with sparse coefficients [17, 18]. This transform sparsity can
be achieved by appropriately selecting the transforms that capture the characteristics of spatial
variations within the image.

In this work, we consider a set of L linear transforms Dy of the complex image f with
k=1,...,L. These transforms are chosen to be high-pass filters, such that their application
provide complex images with a large number of coefficients with small values with only afew
coefficients containing the most of the signal energy. The selection of the linear transforms
that most accurately capture the image characteristics is crucial in the final image quality. We
employ a collection of difference operators to capture signal variation at varying scales. The
directiona contourlets[19], depicted in Fig. 1, are used to capture the overall spatial variation,
as they contain both vertical/horizontal and diagonal directions. In addition, for smaller scale
features, we include first order directional difference operators

[-1 1], [-1 1], (10)
and 45° and —45° first-order derivative filters
-1 0 0 -1
ER1at] @
More complicated transforms can also be incorporated in the proposed framework in astraight-
forward manner (possibly at the expense of computational complexity).

Using these transforms, the image model can be constructed to exploit the sparsity in the
transform coefficients. A commonly used sparse image model is[20]

L
p(fl{ox}) o< exp (-;kz oy || Dif ||B> ; (12)
=

where || - ||h denotesthe | ,-pseudonorm, and oy are the weighting coefficients. It isknown from
the compressive sensing and sparse representation literature [15, 16, 20] that using0 < p < 1
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enforces sparsity on Dy f, with smaller p valuesincreasing the sparsity effect. Hence, the prior in
Eq. (12) enforces sparsity in the transform coefficients Dif, which in turn leads to smoothness
in the image estimate.

The disadvantage of using the prior in Eq. (12) isthat it is nonconvex, and using this penalty
creates a high number of local minima when estimating f. Instead, we use separate Gaussian
priors on each transform coefficient

L N
P(TI{AK}) = exp (—; > > o || (D) ||%> : (13)
k=1i=1
or in amore compact form as
L
P(f[{Ak}) o< exp (-; Y (Dkf)TAk(Dkf)> ; (14)
k=1

where Ay are diagonal matrices with oy, i = 1,...N in the diagonal. Compared to Eq. (12),
where a single parameter is assigned to all coefficients of k" filter output, separate parameters
are used for each coefficient. It can be shown that Eq. (14) is equivalent to Eg. (12) in the limit
p — 0[21], hence it highly enforces sparsity. The model Eqg. (14) has the advantage of being
convex (as opposed to Eqg. (12)), and therefore optimization over Eq. (14) is much easier and
more robust compared to |, minimization.

The parameters oy have a special important role in Eq. (13): they represent the local spatial
activity at each location, and hence they are a measure of spatial variation in the correspond-
ing filters direction. It is clear that the model Eq. (14) requires a large number of parameters,
whose manual selection is not practical. We can, however, estimate them simultaneously with
the complex image. For their estimation, we employ an additional level of model and assign
uniform priors

p(oyi) = const, VK,i. (15)

Notice that this modeling assigns equal probability to all possible values of ¢, hence no prior
knowledge is assumed on its value.

It should be emphasized that this modeling based on sparsity principles does not necessarily
cause the estimates to have very sparse coefficients. Real images are generally only approx-
imately sparse, i.e., a few transform coefficients have large values whereas most coefficients
are very small, but not necessarily exactly zero. This behavior is generally referred to as com-
pressible [22]. Enforcing sparsity to an extreme extent can therefore suppress subtle image
features, which may be important. Our modeling in Eq. (14), on the other hand, allows for the
small-valued transform coefficients through Gaussian distributions while enforcing the general
compressible structure of the images.

4.2. Noise model

The signal-independent noise is modeled via a independent Gaussian noise model on the ob-
served field as

1
Plaf, %) = ep 505 19 HF I3) (19)

with o2 the noise variance. An additional level of modeling (asin Eq. (15)) can beincorporated
to estimate this parameter as well. However, SLIM provides images with very high SNRs (on
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the order of 1000 or more), and therefore o2 is generally very small and can be estimated
experimentally from an uniform area of the observed image. In addition, the Gaussian noise
assumption becomes an accurate description of the noise in SLIM due to the high SNR (asin
fluorescence microscopy [10]).

4.3. Algorithm

Using the modeling described in the previous sections, we formul ate the problem of estimating
the unknown complex image f and the parameters oy using the maximum a posteriori (MAP)
estimates, that is,

L N
f, 0 = argmin -log | p(g|f, o) p(fl{Ak}) HH p(oxi) (17)
f,(in k=1li=
L
= argmin — Hg HfH2+Z (Dif)" Ay (Dif) - (18)
fog O k=1

This problem is convex in f and o, but not jointly, and therefore we resort to an iterative
scheme to estimate the unknownsin an alternating fashion. The optimal estimate of the complex
image can be found by taking the derivative of Eq. (18) and setting it equal to zero, which results
in

-1
L
f= (HTH +02y D[Aka> HTg. (19)
k=1
The parameters oy; can be estimated in asimilar way by equating the corresponding deriva-

tives to zero, which resultsin

N 1

Oi=—""—=>5 > (20)

(Dif); +&

where ¢ is a small number (e.g., 10°°) used to avoid numerical instability. It follows from
Eq. (20) that the parameters oy are functions of the k" filter response at pixel i, and therefore
a gpatially-adaptive estimation is employed for f in Eq. (19) through their joint estimation.
Notice also that matrices Ay are spatial-adaptivity matrices controlling the smoothness applied
at each location; when the filter responses at a pixel are very small, the algorithm assumes that
the pixel has low spatial variation, and applies alarge amount of smoothness at that point. On
the other hand, if the filter responses are high, the pixel islikely to be close to an edge and the
smoothness amount is lowered to preserve the image structure.

In summary, the proposed method dSLIM consists of alternating estimations of the complex
field f using Eq. (19), and the spatial adaptivity matrices Ay using Eq. (20). The block diagram
of asingledSLIM iteration is shown in Fig. 2. Thefilters Dy consist of the derivative operators
in Eg. (10) and Eq. (11), and the directional contourlets shown in Fig. 1. The estimate of the
image Eq. (19) can be computed very efficiently using the conjugate gradient (CG) method. The
matrices H and Dy do not have to be explicitly constructed during CG iterations; all operations
in Eq. (19) can be performed via convolutions in the spatial domain or multiplications in the
Fourier domain. Empirically, we found that the algorithm converges rapidly; a few iterations
(up to 5-10) is generaly enough to provide high-quality results. Hence, the proposed method
can be applied to large images very efficiently.

The proposed a gorithm contains only one free parameter (the noise variance ¢2) that needs
to be set by the user. In our experiments, we empirically estimated its value by taking a rect-
angular region of the image with uniform values and computing the variance in thisregion. As
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Fig. 2. Block diagram of one dSLIM iteration.

mentioned above, this estimate is known to be reliable in images with high SNR [10]. Since
this free parameter corresponds to a physical quantity, its estimation is relatively easy and does
not reguire extensive image-dependent tuning.

Finally, it should be emphasized that dSLIM does not alter the quantitative imaging property
of SLIM, whichisoneits main advantages. Asthe deconvolution isapplied to the complex field
exp [i®(x,y)] rather than to the measured intensities | (x, Y, ¢o) in Eq. (3), the quantitative phase
information is preserved. In contrast, traditional deconvolution methods [10] applied directly to
the intensity images can not preserve the quantitative information.

5. Experiments

In this section, we illustrate the application of dSLIM to complex field images obtained by
SLIM and quantitatively demonstrate the resolution increase. All SLIM images were acquired
using awhite-light source (mean wavelength A = 530 nm); the field of view is 75um x 100um
with the CCD resolution of 1040 x 1388. In all reported experiments, the specimen isrelatively
thin such that the whole image is in focus, and the degradation in the image is only due to
a planar PSF. The PSF, depicted in Fig. 3(a), is obtained experimentally by imaging a sub-
resolution 200nm microbead treated as a point-source. Due to the high SNR provided by SLIM,
this PSF closely matches the actual optical transfer function of the imager.

Inall images, the noise level is estimated within the range 10~ -10~8 (for amaximum signal
value of 1), which is used as the value of the parameter 6. The NAs of the objective and
condenser are NA, = 0.75 and NA¢ = 0.55, respectively. The experimentally measured full-
width-at-half-maximum (FWHM) of the PSF is 540 nm, which is comparable with the expected
Rayleigh limit, calculated s gz-25- = 497nm.

We first investigate the resolution increase obtained by dSLIM by applying it to the exper-
imental PSF. The experimental PSF is shown in Fig. 3(a). Treating this as the original image,
we apply dSLIM and obtain the result shown in Fig. 3(b). The FWHM of the original PSF is
approximately 540nm, whereas after dSLIM, the FWHM is reduced to approximately 238nm,
corresponding to a 2.3 times increase in resolution. The horizontal cross-section of the images
are shown in Fig. 3(c), where the reduction in FWHM s clearly visible. Notice that this res-
olution is significantly below the diffraction limit. The estimated FWHM during the iterative
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Fig. 3. (a) Experimental PSF, (b) result of dSLIM, (c) normalized horizontal cross-sections,
and (d) estimated FWHM s during the iterative procedure.
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Fig. 4. Images of two microbeads (a) SLIM and (b) dSLIM. The cross-sectiona profiles
(with normalized maximum phase values) are shown in (c).

procedure is shown in Fig. 3(d), which shows a significant reduction in the first iterations and
convergence within 10 iterations.

To further examine the resolution increase provided by dSLIM, we next apply it to SLIM
images of multiple 200nm microbeads. Figure 4(a) shows an image of two beads approximately
550 nm apart, which are barely resolved in the original SLIM image. The image after applying
dSLIM is shown in Fig. 4(b), where the microbeads are clearly separated while their distance
isaccurately preserved (Fig. 4(c)).

Next, we demonstrate dSLIM images of biological specimen. A SLIM phase image of a
hippocampal neuron is shown in Fig. 5. The SLIM images are shown on the left column, while
dSLIM images are shown on the right column. It is clear that dSLIM effectively removes the
blur, while deconvolution artifacts and noise are successfully suppressed and object boundaries
faithfully preserved. dSLIM recovers the details of the fine structure of the specimen which
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Fig. 5. (a) SLIM image of a hippocampal neuron, (b) image provided by dSLIM. Detailed
images of the central parts are shown in (c) and (d).

are hard to observe in the original image. The high quality of the dSLIM result can be better
observed from the detailed parts of the image shown in Fig. 5(c) in comparison with the SLIM
image.

Another example is shown in Fig. 6 (Media 1, Media 2), which is a snapshot of a dynamic
SLIM image sequence of a live hippocampal neuron culture. Interference-microscopy is ex-
tremely useful in monitoring dynamic cellular processes over time, as it does not require in-
vasive contrast enhancement techniques (such as fluorescence tagging). SLIM is a very attrac-
tive modality for this application due to its very high spatial and temporal resolution (several
frames/second). It is clear from Fig. 6(c) (Ieft) (Media 2) that the observation noiselevel isvery
low, but the image exhibits a certain level of blur due to the diffraction-limited PSF. The result
of dSLIM isshown in Fig. 6(c) (right) (Media 2), which shows a clear resolution improvement
over the original image. The increased spatial resolution also positively affects the examina-
tion of dynamic neuron processes. Due to more accurate estimates of size and locations of the
particles, the dynamic changes and hence the biological behavior can be better observed (see
Media 2 for avisualization).

To further confirm the increase in resolution in real images, we examine microparticlesin the
SLIM image shown in Fig. 6. Figures 7(a) and 7(b) show detailed images of a single particle
from the SLIM and dSLIM images (marked as region D in Fig. 6(a)) . The cross-sections of
the images are shown in Fig. 7(c). The vertical diameter of the particle is measured as approx-
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Fig. 6. SLIM dynamic imaging of live hippocampal neuron in primary cell culture. (a)
SLIM image (Media 1), (b) dSLIM image (Media 1), (c) Detailed areas of regions A, B,
C from (@) and (b) (Media 2). The SLIM image regions are shown on the left, while the
dSLIM image regions are on the right.

imately 1.5um in the SLIM image, whereas it is measured as 0.63um in the dSLIM image.
The reduction in the length of the particle is approximately 2.3, which isin agreement with the
result of the PSF deconvolution experiment (Fig. 3).

Our final experiment showstwo neuronal processes (putative axons) which were not resolved
in the original SLIM image (region marked as E in Fig. 6(a)). The detailed area is shown
in Fig. 8(a), and the dSLIM result is shown in Fig. 8(b). dSLIM reveals two objects located
approximately 430 nm apart. This can also be observed from the normalized cross-sections
passing through the maximum phase values, shown in Figs. 8(c). The evolution of thisarea over
time is shown in Fig. 9 (Media 3). It can be observed both from the original images and the
cross-sections that the objects are just resolved in some time frames, but unresolved in others.
dSLIM successfully separates the objects through the whole dynamic sequence (Media 3).
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Fig. 7. (@ SLIM image of asingle particle from the region D in Fig. 6, (b) dSLIM image,
and (c) normalized cross-sections from the images.
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Fig. 8. (8) Two very closely located particles from the region E in Fig. 6 not resolved
in the SLIM image, (b) dSLIM image, and (c) the normalized cross-sections through the
maximum phase val ues.
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Fig. 9. Dynamic evolution of the area shown in Fig. 8 (Media 3). Top row: SLIM images,
middlerow: dSLIM images, bottomrow: Normalized cross-sections of the images (through
the segment shown in the top-left image) at each time point.
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6. Conclusion

In this paper, we presented a novel deconvolution method, dSLIM, for complex image fields
acquired by interference microscopy. Our formulation is based on three key observations: First,
the image formation can be treated as alinear process in the complex fields, such that the degra-
dation of the microscopy can be modeled by a PSF acting on the complex images. Second, due
to the high SNR provided by the SLIM, the experimentally obtained PSF of the imager closely
matchesthe actual PSF. Finally, the phase images of biological specimen can bevery accurately
modeled using sparsity principles. We combined these propertiesto develop avery effective de-
convolution procedure that significantly improves the final resolution, allowing imaging very
fine structures and motions in live cells below the diffraction limit. Due to the high spatial and
temporal resolution, this approach can be utilized to acquire new information for studying live
cells.

Acknowledgments

This work was supported in part by the Beckman Institute Postdoctoral Fellowship to SDB
from the University of Illinois at Urbana Champaign, the National Science Foundation (CBET
08-46660 CAREER, CBET-1040462 MRI) and the National Cancer Institute (R21 CA147967-
01). We thank Larry Millet and Martha Gillette for providing live cell specimens. For more
information, visit http://light.ece.uiuc.edu/.

#144841 - $15.00 USD  Received 28 Mar 2011; revised 4 May 2011; accepted 24 May 2011; published 2 Jun 2011
(C) 2011 OSA 1 July 2011/ Vol. 2, No. 7/ BIOMEDICAL OPTICS EXPRESS 1827





