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Abstract— Spatial light interference microscopy

(SLIM) is a powerful new quantitative phase optical

imaging technique that can be used for studying live cells

without the need for exogenous contrast agents. This

paper proposes a novel deconvolution-based approach

to reconstructing SLIM data, which dramatically

improves the visual quality of the images. The proposed

deconvolution formulation is tailored to the physics

of SLIM imaging of biological samples, and a new

fast algorithm is designed for computationally-efficient

image reconstruction in this setting. Simulation and

experimental results demonstrate that deconvolution

can reduce the width of the point-spread function by at

least 20%, and can significantly improve the contrast

of high-resolution features. Temporally-resolved SLIM

imaging with the high spatial resolution enabled by

deconvolution provides new opportunities for studying

the dynamics of cellular and sub-cellular processes.

I. INTRODUCTION

Optical microscopy is an important tool for studying

biology at sub-cellular scales. However, the study of

live cells using traditional bright field microscopy is

limited by the fact that most cellular structures have

little absorption and are virtually transparent to visible

light. While it is possible to increase contrast by

using exogenous contrast agents (i.e., staining/labeling

cellular structures with dyes or fluorophores), the use of

such agents can require complicated sample preparation

and/or can interfere with the viability of live cells

[1]. Phase contrast (PC) and differential interference

contrast (DIC) microscopy offer the ability to visualize

sub-cellular features of live cells without labels, using

the optical phase shift of the light passing through

a sample (a function of the sample’s thickness and

refractive index) as an endogenous contrast mecha-

nism. Quantitative phase imaging (QPI) represents an
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evolution of PC and DIC techniques that can make

precise measurements of the optical phase shift through

a sample, which can subsequently be used to infer a

variety of important biological parameters [2].

Spatial light interference microscopy (SLIM) is a

new QPI method that offers significantly enhanced

sensitivity and resolving power relative to previously

reported QPI systems [3], [4]. However, like other

optical microscopy techniques, the spatial resolution of

SLIM is generally limited by diffraction and imper-

fections in the microscope system. In this work, we

demonstrate that the use of a deconvolution approach

[5] to reconstruct the original optical field significantly

enhances SLIM images, and can help make SLIM

an even more powerful tool for understanding the

morphology and dynamics of live cells.

II. PROBLEM FORMULATION

We will focus on two-dimensional imaging of thin

samples in this work; a more complete discussion

of the physics of SLIM can be found elsewhere [3].

We denote the complex-valued optical field of interest

as U (x, y), where x and y are spatial variables. We

assume that |U (x, y)| is constant throughout the field of

view, due to the near-transparency of the sample, such

that U (x, y) can be written as U (x, y) = αeiΨ(x,y),

where α is the magnitude of the field. Without loss

of generality, we will assume that the magnitude of

U (x, y) is normalized to 1.

The optical field observed at the detector plane

O (x, y) is a degraded version of U (x, y). This degra-

dation process is well-modeled using the convolution

relationship

O (x, y) =

∫∫

h (x− s, y − t)U (s, t)dsdt, (1)

where h (x, y) is the point-spread function (PSF) of the

microscope. We will denote the magnitude and phase of

O (x, y) as M (x, y) and Φ (x, y), respectively. SLIM

uses interferometry to measure the phase Φ (x, y),
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while the magnitude M (x, y) of the field is not mea-

sured.1 In practice, an array of charge-coupled device

(CCD) detectors is used to record the interferometric

data, such that we have access to samples of Φ (x, y) on

the Cartesian grid of points determined by the spatial

locations of the CCD detectors.

The goal of the present work is to recover U (x, y)
from the sampled values of Φ (x, y). The deconvolution

procedure is quite different for SLIM than it is for

conventional deconvolution microscopy [5], due to the

direct measurement of phase information rather than

the intensity information that is acquired in more con-

ventional microscopy applications.

III. PROPOSED METHOD

The proposed method consists of two steps. The

first step involves the determination of the PSF of the

microscope. We measure the PSF by SLIM imaging of

sub-resolution microbeads, which are used to represent

point sources [5].

In the second step, we use the measured PSF and

Eq. (1) to recover a high-resolution estimate of U (x, y)
from Φ (x, y). For practical implementation, we con-

sider a discretization of Eq. (1):

m⊙ eiφ = Heiψ, (2)

where ⊙ denotes the Hadamard product (element-by-

element multiplication), and H is a Toeplitz-block-

Toeplitz matrix representing two-dimensional convolu-

tion with the PSF. The vectors m, eiφ, and eiψ contain

spatial samples of M (x, y), eiΦ(x,y), and U (x, y) =
eiΨ(x,y), respectively, with the spatial sampling loca-

tions defined by the locations of the CCD detectors.

Note that H andφ in Eq. (2) are assumed to be known,

while m and ψ are unknowns that will be estimated.

Due to noise and modeling error, it is not always

possible to find a solution for which Eq. (2) holds

exactly, and a frequently-used approach is to iden-

tify parameter estimates that match the observed data

as closely as possible. In traditional deconvolution

microscopy [5], it is common to use a data-fidelity

criterion that models the Poisson statistics of photon-

limited optical imaging. In contrast to photon-limited

scenarios, SLIM has intrinsically high signal-to-noise

ratio due to the use of white-light illumination, and the

dominant sources of measurement errors for SLIM are

small instrumental instabilities. As a result, we adopt a

1A measurement of the magnitude would require instrument

modification, and would have limited information content due to

the transparency of the sample.

least-squares data-fidelity criterion because it leads to

efficient computations:
{

m̂, ψ̂
}

= arg min
m,ψ
m≥0

∥

∥m⊙ eiφ −Heiψ
∥

∥

2

ℓ2
, (3)

where ‖·‖2ℓ2 computes the sum-of-squares. In practice,

however, the problem in Eq. (3) is very ill-posed, in the

sense that the inverse mapping from Φ (x, y) to Ψ(x, y)
through Eq. (3) is unstable with respect to small per-

turbations of Φ (x, y). As a result, it is necessary to use

additional constraints to obtain meaningful results. We

propose to estimate m and ψ by solving the following

penalized nonlinear least-squares problem:
{

m̂, ψ̂
}

= arg min
m,ψ
m≥0

∥

∥m⊙ eiφ −Heiψ
∥

∥

2

ℓ2
+λR

(

eiψ
)

,

(4)

where R
(

eiψ
)

is a regularization functional that pe-

nalizes unlikely reconstructions, and λ is a regular-

ization parameter. In particular, we assume that the

true U (x, y) is relatively smooth, and thus encourage

smooth reconstructions using

R
(

eiψ
)

=

∥

∥

∥

∥

[

Dx

Dy

]

eiψ
∥

∥

∥

∥

2

ℓ2

,

where Dx and Dy are matrices that use finite-

differences to approximate spatial differentiation along

x and y, respectively.

A. Algorithm

Equation (4) represents a nonlinear, nonconvex op-

timization problem, and does not have a closed form

solution. However, for a fixed value of ψ, the optimal

m does have a closed form solution:

m̂ = arg min
m≥0

∥

∥m⊙ eiφ −Heiψ
∥

∥

2

ℓ2
+ λR

(

eiψ
)

=
[

e−iφ ⊙Heiψ
]

+
,

where [z]+ = real (z) ⊙ 1{real(z)>0}, and 1{real(z)>0}

is an indicator function that indicates the entries of z

where real (z) is positive. As a result of this closed

form solution, we can use the variable projection frame-

work [6] to instead find a solution to

ψ̂ = argmin
ψ

∥

∥

∥

[

e−iφ ⊙Heiψ
]

−

∥

∥

∥

2

ℓ2
+ λR

(

eiψ
)

, (5)

where [z]− = z− [z]+. The variable projection frame-

work ensures that Eq. (5) has the same optimal solution

for ψ̂ as Eq. (4), and the use of variable projection

generally reduces the number of optimization variables,
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10 µm

(a) Mixed glial cultures (b) Neuron cultures

Fig. 1. SLIM snapshot images of cell cultures derived from postnatal (P1-P2) Long-Evans BluGill rats. (a) Mixed glial cultures from

bilateral dissection of the ventral hypothalamus. (b) Primary hippocampal neuron cultures from the CA1-CA3 region of the hippocampus.

The left side of each image shows the original observed phase, while the right side shows the phase after application of the proposed

deconvolution-based processing. The 10 µm scale bar is valid for both images.

reduces computational complexity, and improves the

convergence rate of iterative algorithms [6].

We use the Polak-Ribiere nonlinear conjugate gradi-

ent (NCG) method [7] to find a local critical point of

Eq. (5), where the gradient of Eq. (5) with respect to

ψ is given by

gψ =

− 2 sin (ψ)⊙
(

HH
i imag

(

e−iφ ⊙Heiψ
))

+ 2 cos (ψ)⊙
(

HH
r imag

(

e−iφ ⊙Heiψ
))

− 2 sin (ψ)⊙
(

HH
r Zreal

(

e−iφ ⊙Heiψ
))

− 2 cos (ψ)⊙
(

HH
i Zreal

(

e−iφ ⊙Heiψ
))

+ 2λimag
(

e−iψ ⊙
(

DH
x Dxe

iψ +DH
y Dye

iψ
))

,

with

Hi = imag
(

diag
(

e−iφ
)

H
)

,

Hr = real
(

diag
(

e−iφ
)

H
)

,

and

Z = diag
(

1{real(e−iφ⊙Heiψ)<0}

)

.

In practice, due to the local convergence of NCG, it

is important to initialize the algorithm well. We have

found that a reasonable starting point can be obtained

by assuming m in Eq. (4) is constant, and by ignoring

the constraint that U (x, y) has constant magnitude. In

this case, Eq. (4) can be reformulated as

û = argmin
u

∥

∥eiφ −Hu
∥

∥

2

ℓ2
+ λR (u) , (6)

where u is a complex vector of spatial samples of

U (x, y), and an initial guess for ψ is obtained from

extracting the phase from û. In practice, we have

observed that the phase of û and the final estimated

phase using Eq. (4) are generally quite similar. The

benefit to using Eq. (6) for initialization is that the

solution is linear and has the closed form

û =
(

HHH+ λDH
x Dx + λDH

y Dy

)−1
HHeiφ. (7)

The matrices in this expression all have Toeplitz-block-

Toeplitz structure, which means that the optimal û

can be found using standard Toeplitz/circulant solvers

that leverage the fast Fourier transform to considerably

improve computational efficiency [8], [9].

IV. RESULTS AND DISCUSSION

In all experiments, SLIM imaging was performed

with a white-light source (wavelengths between 400

and 700 nm), with a 1040×1388 CCD array sampling

uniformly over 75 µm × 100 µm field of view.
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2 µm

(a) Original Image (b) Deconvolved Image
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Fig. 2. SLIM phase images of 200 nm polystyrene beads (a) before and (b) after deconvolution-based reconstruction. (c) Profiles

through the centers of these phase images illustrate that the deconvolution process increases the peak phase of the beads, as expected for

a higher-resolution image. (d) After normalization of the profiles, it is apparent that the spatial resolution has also improved, with the

full-width-at-half-maximum approximately 20% smaller for the deconvolved result.

Figure 1 shows live cell imaging results obtained

using the proposed method, which demonstrate signif-

icant visual enhancement relative to the original blurry

images recorded by the CCD array. Due to the temporal

resolutions possible with SLIM (on the order of several

Hz), it is possible to clearly visualize a number of

different sub-cellular processes, including the dynamics

of the actin network and various transport processes.

Imaging of 200 nm microbeads was performed to

analyze the improvement in resolution with the pro-

posed approach, and a representative example is shown

in Fig. 2. As the figure illustrates, the deconvolution

method successfully increases the resolution, with a

reduction in the full-width-at-half-maximum (FWHM)

of the the PSF by approximately 20%. This 20%

reduction in the FWHM is consistent with additional

numerical simulations with an ideal point-source (not

shown), which suggest that the resolution has improved

from 544 nm down to 430 nm using deconvolution.

The regularization parameter λ for all reconstruc-

tions was chosen based on a singular-value analysis so

that the condition number κ of the matrix inversion

in Eq. (7) was equal to 500 (significantly smaller

than 1014, which was the condition number of the

unregularized problem). Figure 3 illustrates the noise-

amplification effects of using smaller values of λ.

V. CONCLUSIONS

This paper proposed a deconvolution-based approach

for reconstructing SLIM images, using a novel formula-

tion that was specifically tailored to SLIM imaging and

a new fast algorithm to solve the resulting optimization

problem. Simulation and experimental results indicate

significant resolution enhancement with the proposed

5 µm

(a) κ = 500 (b) κ = 50 000

Fig. 3. Reconstruction results using different regularization pa-

rameters. κ refers to the condition number of Eq. (7).

approach, with important implications for label-free

high-resolution imaging of live cells.
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