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Abstract: We applied the newly developed Fourier transform light 

scattering (FTLS) to study dynamic light scattering in single live cells, at a 

temporal scale of seconds to hours. The nanoscale cell fluctuations were 

measured with and without the active actin contribution. We found 

experimentally that the spatio-temporal signals rendered by FTLS reveal 

interesting cytoskeleton dynamics in glial cells (the predominant cell type in 

the nervous system). The active contribution of actin cytoskeleton was 

obtained by modulating its dynamic properties via Cytochalasin-D, a drug 

that inhibits actin polymerization/depolymerization. 
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1. Introduction 

Recently, dynamic properties of cytoskeleton have been the subject of intense scientific 

interest [1–12]. In particular, it has been shown that actin filaments play an important role in 

various aspects of cell dynamics, including cell motility [2–4,12]. Actin filament 

polymerization has been studied in real time using total internal reflection fluorescence 

microscopy [5,6]. By observing the fluorescence signal arising from labeled filaments, the rate 

of rearward actin transport and that of forward cell movement have been quantified [8,9]. 

Particle tracking microrheology [13] has revealed unexpected behavior in live cell mechanics 

both by using passive (thermal) [14] and active (driven) [15] probing beads. This approach 

also revealed violation of the fluctuation-dissipation theorem in bacterial suspensions [16]. 

We have developed Fourier transform light scattering (FTLS) as a novel optical method 

that combines the high spatial resolution associated with optical microscopy and statistical 

averaging of light scattering techniques [17]. Because the measurement is performed in the 

image plane, where the optical field is uniform in amplitude, FTLS utilizes efficiently the 

dynamic range of the recording detector array and, thus, provides very high sensitivity to 

weakly scattering media such as thin tissue slices [18] and single cells [17]. Within a single 

measurement, FTLS renders dynamic information over a broad angular range, limited only by 

the numerical aperture of the microscope. Here we use FTLS to measure the spatio-temporal 

behavior of active (ATP consuming) dynamics due to F-actin in single glial cells. This activity 

mediated by motor protein Myosin II underlies diverse cellular processes, including cell 

division, developmental polarity, cell migration, filopodial extension, and intracellular 

transport. Extracellular signals mediate experience-induced changes of actin dynamics within 
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synaptic microdomains of neurons [19,20]. These actin-based changes can transform cell 

state, locally and globally. In this paper we quantify the dynamics associated with the cell 

membrane and intrinsic cell structure motions. We used probing beads attached to the cell 

membrane as a control experiment to demonstrate the Cytochalasin-D efficacy in disrupting 

actin polymerization and, thus, prove that FTLS is sensitive to actin-driven dynamics. 

2. Methods 

2.1. Fourier transform light scattering (FTLS) 

FTLS requires accurate optical phase retrieval for elastic light scattering measurements and, in 

addition, high phase stability for dynamic light scattering studies. The system diagram was 

depicted in our earlier publication [21] and it satisfies the requirements above by 

incorporating a common path interferometer with a commercial computer-controlled 

microscope. The second harmonic of a Nd:YAG laser (λ = 532 nm) is used to illuminate the 

sample in transmission. To ensure full spatial coherence, the laser beam is coupled into a 

single mode fiber and further collimated by a fiber collimator. The light scattered by the 

sample is collected by the objective lens of the microscope (Axio Observer Z1, Zeiss) and 

imaged at the side port of the microscope. A diffraction grating is placed at the image plane, 

thus generating multiple diffraction orders containing full spatial information about the image. 

In order to establish a common-path Mach-Zehnder interferometer, a standard spatial filtering 

lens system is used to select the two diffraction orders and generate the final interferogram at 

the CCD plane. The 0th order beam is low-pass filtered using a spatial filter positioned in the 

Fourier plane of the first lens, such that at the CCD plane it approaches a uniform field. 

Simultaneously, the spatial filter allows passing the entire frequency content of the 1st 

diffraction order beam and blocks all the other orders. The 1st order is thus the imaging field 

and the 0th order plays the role of the reference field. The two beams propagate along a 

common optical path, thus significantly reducing the longitudinal phase noise. The final 

quantitative phase image of the sample is retrieved via spatial Hilbert transform [21–23]. 

Thus, from a single CCD exposure, we obtain the spatially-resolved phase and amplitude 

associated with the image field. From this image field information ( )E r , the complex field 

can be numerically propagated at arbitrary planes; in particular, the far-field angular scattering 

distribution �E  can be obtained simply via a Fourier transformation [17], 

 � 2
( , ) ( , )

i
U t U t e d

− ⋅= ∫ q r
q r r   (1) 

2.2. Cell preparation of enteric glial cells (EGCs) 

We applied FTLS to study the slow active dynamics of glial cytoskeleton. Enteric glial cells 

(EGC) of the enteric (i.e. intestinal) nervous system have long been considered a mechanical 

support. However, more recent findings provide insight to more complex homeostatic and 

inflammatory interactions with neurons, lymphocytes, epithelial cells and capillaries of the gut 

to modulate gastrointestinal motility and respond to inflammation [24]. The EGC cell line was 

obtained from ATCC (CRL-2690, designation: EGC/PK060399egfr), cultured in DMEM 

(Gibco product #31053) with glucose (4.5 g/L), and supplemented with 3.0mM L-glutamine 

and 10% fetal bovine serum. Confluent cultures were propagated by incubation in trypsin 

EDTA to remove cells from culture flasks. The cell suspension in trypsin was diluted into 

culture media and gently triturated to break up aggregates. Cells were further diluted for 

culture passage or plating in glass-bottom culture Fluorodishes (catalogue number: FD-35; 

World Precision Instruments, Sarasota, FL) and were allowed to expand from initial plating 

for 1-2 days and imaged prior to reaching 90% confluence. 
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2.3. Blocking cell actin polymerization 

During the FTLS measurement, the cells were maintained under constant temperature at 37°C 

via the incubation system that equips the microscope (Axio Observer Z1, Zeiss). The 

sensitivity of FTLS to actin dynamics was tested by controlling its polymerization activity. In 

order to inhibit actin polymerization, Cytochalasin-D (Cyto-D), approximately 5 µM in 

Hibernate-A, was added to the sample dishes. Cyto-D is a naturally occurring fungal 

metabolite known to have potent inhibitory action on actin filaments by capping and 

preventing filament polymerization and depolymerization at the rapidly elongating end of the 

filament. By capping this “barbed” end, the increased dissociation at the pointed end 

continues to shorten the actin filament. In this way, Cyto-D alters cytoskeleton and membrane 

dynamics which was captured via our FTLS measurement. The working algorithm and 

controlling efficiency of applying Cyto-D to inhibit the actin polymerization can be found in 

detail in Ref [25,26]. 

2.4. Particle tracking 

We performed two sets of experiments: in addition to the main FTLS studies on actin 

dynamics, we also performed a control test to demonstrate the Cyto-D effect on actin 

polymerization. Thus, as a control experiment, we first used the single particle-tracking 

method [27,28] to monitor the actin-induced cell motions, with and without the Cyto-D 

inhibitor. The dynamic property of the cell membrane was investigated using micron-sized 

beads attached as probes to the cell membrane. Solutions of 1 micron diameter polystyrene 

beads (Polysciences Inc.) were diluted by mixing 2 µL with 1 mL Hibernate-A media 

(BrainBits LLC, Springfield, IL) and centrifuged at 4,400 rpm for 5 minutes to remove the 

liquid stock solution. After centrifugation, the media was aspirated almost entirely, down to 

approximately 50 µL Hibernate with concentrated beads. Hibernate-A (1 mL) was again 

added back to the vial and the media-bead solution was pipetted vigorously to resuspend 

beads in media. The bead suspension was heated to 37°C, and exchanged with culture media 

in the dish. Enteroglia culture dishes were sealed with parafilm and returned to the incubator. 

Cultures were left undisturbed for approximately 2 hours to enable beads to attach to 

enteroglia and for cells to adjust to the serum-free Hibernate media. Immediately prior to 

imaging, cultures were rinsed with 6-8 mL of Hibernate-A (37°C) to remove loosely attached 

and free-floating beads. Hibernate-A was used for all imaging of EGC dynamics, since it is 

buffered to retain optimal pH in ambient carbon-dioxide levels. 

The x and y coordinates of the tracked beads were recorded as a function of time and the 

trajectories were used to calculate the mean squared displacement (MSD) [29], 

 
2 2

( ) [ ( ) ( )] [ ( ) ( )] ,MSD t x t t x t y t t y t∆ = + ∆ − + + ∆ −   (2) 

where <…> indicates the average over time and also over all the tracked particles. Assuming 

thermal equilibrium, from Eq. (2) the conventional microrheology can be inferred via the 

generalized Stokes-Einstein equation [27,29–31]. 

3. Results 

3.1 Bead tracking 

Typically, a small region of interest surrounding a single tracked bead is captured and we 

record displacements of the attached bead before and after treatment with cyto-D. Figures 1a, 

1b show examples of the bead trajectories before adding drug. These trajectories are broader, 

with larger displacements than those associated with the cells under cyto-D treatment (Figs. 

1c, 1d). The trajectories of the tracked beads are further used to calculate the MSD as a 

function of time [Eq. (2)]. The results are summarized in Fig. 1e. Each curve is the result of an 

average over all the beads tracked under the same experimental condition. The data exhibits a 
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power law trend over two distinct temporal regions. We first fit the data with a power law 

equation, t
α
, over the initial 150 seconds. Interestingly, the exponents obtained from the fit are 

below 1: α = 0.6 and 0.82 for before and after treatment, respectively, which is an indication 

of sub-diffusion. The change in slope at t~200 s is related to the actin polymerization lifetime, 

which is known to be in the minute range [12]. The fit at the t>150 s gives α = 0.91 and 0.99, 

respectively, for before and after treatment actin inhibition. These results, of exponents 

becoming closer to unity after drug treatment, indicate that blocking actin polymerization 

favors Brownian motion (for which α = 1), as expected [32]. The MSD before treatment is 

larger than that of after, which is expected, as the active contributions of the cytoskeleton 

contribute to cell motions. These findings indicate that our control for actin polymerization 

functions well. 
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Fig. 1. Tracking beads attached to the cell membrane: a)-b) bead trajectories before cyto-D 

treatment and c)-d) after drug treatment. e) Corresponding mean square displacement of the 

tracked beads before (red) and after (blue) treatment. The fitting with a power law function 

over two different time windows is indicated. The inset shows a quantitative phase image of a 

EGC with 1µm beads attached to the membrane. 

3.2. Temporal fluctuations 

To determine how the actin cytoskeleton contributes to the dynamic light scattering of cells 

alone, cells were imaged via FTLS by acquiring 512 frames, at 0.2 frames per second, over 

~45 min prior to and after the Cyto-D application, respectively (Figs. 2a, 2b). The 

displacement was calculated with respect to the average for each point in the quantitative 

phase images. Figure 2c shows a comparison between the membrane displacement histograms 

of a cell before and after the actin inhibitor. It is evident from this result that the 

polymerization phenomenon is a significant contributor to the overall cell dynamics, as 

indicated by the broader histogram distribution. Further, both curves exhibit non-Gaussian 

shapes at displacements larger than 10 nm, which suggests that the cell motions both before 

and after actin inhibition are characterized by non-equilibrium dynamics, consistent with the 

short-time behavior in Fig. 1e. Note that these path-length fluctuations can have two main 

causes: membrane fluctuations, which modify the local cell thickness and intracellular mass 

transport, which produce refractive index fluctuations. The homogeneous appearance of the 

quantitative phase images and also the control experiments with the membrane-tagged beads 

seem to indicate that the membrane motions are dominant. It is known that actin is tethered to 

the membrane bilayer and keeps it under tension. This picture explains the significant effect of 

blocking actin activity, as resulting into a less tensed membrane and, thus, higher 

displacements. 
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Fig. 2. a-b) Quantitative phase images of glial cell before and after Cyto-D treatment. c) 

Histogram of the path-length displacements of a glial cell before and after drug treatment, as 

indicated. The blue dash line indicates the fit with a Gaussian function and brown dash line 

shows the background fluctuation. 

Figure 3a presents the comparison of the spatially-averaged power spectra associated with 

the FTLS signal for glial cells averaged over three individual measurements which were taken 

at different days but following the same sample preparation procedures and experimental 

condition, before and after treatment with the actin blocking drug. The broader power 

spectrum of the untreated cell membrane motions (Fig. 3a) is consistent with the histogram 

distribution in Fig. 2c. The intact cell exhibits a power spectrum that departs from a 

Lorentzian shape at frequencies of the order 4-6x10
−3

 rad/s, which indicates that actin affects 

the dynamics predominantly at short times (i.e. minute scale). Further, both frequency-

averaged (statics) curves shown in Fig. 3b indicates similar functional dependence on the 

wavenumber q, but with enhanced fluctuations for the normal cell, by a factor of ~3.4. 
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Fig. 3. a) Spatially-averaged power spectrum of glial cells before and after drug treatment, as 

indicated. Error bars show the standard deviation (same for all the followed figures) and dash 

lines show the fit with Lorentzian equations. b) Temporally-averaged power spectrum before 

and after drug treatment. The inset shows the ratio of the two spectra. 
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3.3. Spatio-temporal fluctuations 

One key feature of FTLS is its ability to render simultaneously angular scattering from an 

entire range of angles. Figures 4a–4d show the power spectrum of the fluctuations for the 

same cells before and after the actin inhibition, as function of both frequency ω (at two 

particular q-values) and wavenumber q (at two particular frequencies ω). Thus, after actin 

inhibition, the functional dependence of ∆u
2
(ω) assumes a Lorentzian shape and does not 

change notably with varying q, which contrasts with the situation where the cell cytoskeleton 

is intact. This interesting behavior can be seen in Figs. 4a, 4b, where the temporal power 

spectra at 2 particular wavenumbers are shown. These findings suggest that, as the actin is 

disrupted, the dynamic scattering signal is most likely due to Brownian-like fluctuations. To 

better capture dynamic activity within our experimental temporal resolution, the power 

spectra vs. q at two frequencies divided far enough are shown in Figs. 4c, 4d. At frequencies 

above certain threshold ω0 (Fig. 4c), there is a significant mismatch in shape between the 

“before” and “after” ∆u
2
(q) curves. On the other hand, for lower frequencies (Fig. 4d), the two 

dependencies look similar, with the normal cell exhibiting consistently higher fluctuations. 

The results in Fig. 3 and 4 suggest that the actin contribution is characterized by a certain 

lifetime, which is consistent with previous findings of polymerization kinetics [12]. 
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Fig. 4. a-b) Temporal power spectra of glial cells before and after drug treatment at two 

different spatial frequencies, as indicated. Dash lines show fits with Lorentzian equations for 

the power spectra after drug treatment; c-d) Spatial power spectra at two different frequencies, 

as indicated. The error bars indicate the standard deviation associated 3 different 

measurements. 

4. Conclusion 

In summary, we applied FTLS to measure the effects of actin cytoskeleton on the spatio-

temporal fluctuations of cell dynamics. We believe that these label-free results are extremely 

promising for studying cytoskeleton dynamics and will complement very well the existing 

fluorescence studies. Retrieving the membrane tension and actin lifetime without physical 

contact will likely provide a useful approach for studying fundamental cell biology 

phenomena, such as mitosis, phagocytosis, or motility [33]. With further theoretical 

developments, the FTLS data will be connected with the cell microrheology obtained via one- 

and two- particle tracking [27,28]. 
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