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ABSTRACT
Inadequate myelination in the central nervous system is associated with neurodevelopmental complications. Thus, quantitative, high spatial
resolution measurements of myelin levels are highly desirable. We used spatial light interference microcopy (SLIM), a highly sensitive quan-
titative phase imaging (QPI) technique, to correlate the dry mass content of myelin in piglet brain tissue with dietary changes and gestational
size. We combined SLIM micrographs with an artificial intelligence (AI) classifying model that allows us to discern subtle disparities in myelin
distributions with high accuracy. This concept of combining QPI label-free data with AI for the purpose of extracting molecular specificity
has recently been introduced by our laboratory as phase imaging with computational specificity. Training on 8000 SLIM images of piglet
brain tissue with the 71-layer transfer learning model Xception, we created a two-parameter classification to differentiate gestational size and
diet type with an accuracy of 82% and 80%, respectively. To our knowledge, this type of evaluation is impossible to perform by an expert
pathologist or other techniques.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0050889

I. INTRODUCTION

Myelin is a proteolipid-rich membrane that covers axons and
provides the necessary insulation to effectively transmit electrical
neurFal signals throughout various brain regions.1 Myelination of
fiber bundles is one of the longest brain maturation processes in

humans.2 Proper myelin development during the perinatal period
is crucial for network integration and higher brain functioning3,4

and remains vital in adulthood.5 The rapid growth interval during
the perinatal period is a decisive time for neural development and
is an especially important stage for infants of small gestational age
(SGA). Intrauterine growth-restricted (IUGR) and low birth weight
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(LBW) infants are particularly affected by insufficient myelination.
Newborns with such deficiencies are at greater risk of morbidity and
mortality6 and display problematic neurological effects that include
learning impairments, behavioral problems, neuropsychiatric irreg-
ularities, and seizure disorders.7,8 The development and analysis
of dietary treatments designed to minimize the cognitive issues
correlated with IUGR and LB are therefore of great importance.

Different techniques have been used previously for assess-
ing myelin density in biological samples. Luxol Fast Blue (LFB)
is a dye that stains myelin blue in tissue fixed with formalin.9 In
terms of its spatial distribution, LFB provides information on the
presence of myelin but does not allow for its direct quantifica-
tion. Magnetic resonance imaging (MRI) enables in vivo visual-
ization of human brain structures10 and provides a description of
myelin concentrations.11 However, detection of myelin with MRI
is implicit, relying on water proton spins. Although there has
been evidence of a decent correspondence between MRI and LFB
staining, MRI remains a low sensitivity method.12 Proton induced
x-ray emission (PIXE) provides a semi-quantitative determination
of myelin components within a sample, through phosphorous con-
centrations, but has low resolution and requires complex and expen-
sive equipment.10

Quantitative phase imaging (QPI)13–32 is a label-free imag-
ing approach that can evaluate path length changes in biolog-
ical samples at the nanometer scale. QPI has numerous medi-
cal diagnostic applications.33 Di Caprio et al. have applied QPI
to research sperm morphology,34 Marquet et al. have used QPI
to study living neurons,35 Lee et al. have used QPI to study
cell pathophysiology,36 and Jin et al. have used QPI to examine
macrophages and hepatocytes.37 Conventional quantitative phase
methods, however, use coherent light sources that tarnish image
contrast with speckles. With the use of a broadband field, spatial
light interference microcopy (SLIM) overcomes this disadvantage
and measures nanoscale information and dynamics in live cells by
interferometry.38

We have previously analyzed piglet brain tissue using color
spatial light interference microscopy (cSLIM),39,40 which uses a
brightfield objective and an RGB camera and generates four inten-
sity images, one of which is a standard LFB color image. Thus,
cSLIM simultaneously yields both a brightfield image and a phase
map. We showed that appropriate for gestational age (AGA) piglets
have increased internal capsule myelination (ICM) compared to
small for gestational age (SGA) piglets and that a hydrolyzed fat
diet improves ICM in both.41 However, this analysis was largely
manual.

Recently, there has been growing interest in applying the
capacity of AI to investigate specific datasets in medical fields.42–49

AI has special image processing capabilities to discern multi-
faceted features that would otherwise elude trained pathologists.
Deep convolution networks provide the opportunity to test thou-
sands of image related feature sets to recognize specific tissue
configurations.50,51

Here, we apply phase imaging with computational specificity
(PICS),52,53 a new microscopy technique that combines AI computa-
tion with quantitative data to extract precise molecular information.
Specifically, we combine deep learning networks with SLIM data to
define subtle myelin variations in brain tissue, a strategy undertaken
for the first time to our knowledge. We used a SLIM-based tissue

scanner in conjunction with deep learning methods to classify the
associated gestational size and diet of the tissue, which is inherently
linked to myelin distribution and mass density. Such a system does
not require staining of tissue. However, we performed our measure-
ments on LFB stained samples and computationally normalized the
phase maps to account for the effects of the stain.39 The refractive
index of stained tissue is expected to vary from that of unstained
tissue because of the absorptive properties of the stain. Our normal-
ization technique has been developed by comparing the phase maps
of the same tissue samples before and after staining. Further details
on this calculation can be found in the original cSLIM paper.39

II. METHODS
A. Brain tissue samples

Tissues were derived from piglets as described in Ref. 41. Asso-
ciated diets and gestational sizes, as well as tissue slide preparations,
are fully described in Ref. 40. Briefly, piglets were acquired at two
days of age from the University of Illinois Swine Farm and under-
went limited farm processing. SGA was defined as piglets weighing
0.5–0.9 kg at birth, and piglets weighing 1.2–1.8 kg at birth were clas-
sified as AGA. Under standard conditions, as defined in a previous
publication,54 piglets were individually placed in a caging system
and randomly assigned to hydrolyzed fats (HF) or control (CON)
diet treatment groups in an arrangement of size (AGA or SGA)
and diet (CON or HF). The final extracted brain tissues were cut
into 4 μm thick sections, mounted on glass slices, and subsequently
stained with LFB. All animal care and experimental procedures were
approved by the University of Illinois at Urbana-Champaign Insti-
tutional Animal Care and Use Committee, in accordance with the
National Research Council Guide for the Care and Use of Laboratory
Animals.

B. Phase imaging with computational specificity
(PICS)

We have combined deep learning with SLIM data to predict
gestational size and diet regimen from single images. Our label-free
SLIM scanner comprises custom hardware and in-house developed
software. The interface enables scanning of the slide with automated
focus adjustment. Depending on the focus points selected for the
four edges of the area to be imaged, an interpolation of z-values
is calculated to ensure adequate focus throughout measurement.
The size of a frame in this case is 255 × 170 μm2 (1624 × 1224
pixel2), and the lateral step size is 1580 and 1180 μm, horizon-
tally and vertically, which allows sufficient overlap to create stitches.
The duration of the scan for 25 × 25 images is 10 min after the
setup of focus points. The SLIM principle of operation relies on
phase shifting interferometry applied to a phase contrast setup (see
Ref. 30 for details). Figure 1 shows the optical schematic of the sys-
tem. An add-on module (Cell Vista SLIM Pro, Phi Optics, Inc.) with
a spatial light modulator is connected to a commercial phase con-
trast microscope (Axio Observer Z1, Zeiss). We shift the phase delay
between the incident and scattered field in increments of π/2 and
acquire four respective intensity images, which suffices to extract
the phase image unambiguously. Figure 2 shows examples of SLIM
images of piglet brain tissue corresponding to the area of the internal
capsule (IC).
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FIG. 1. Schematic setup for SLIM. (a) The SLIM module is attached to a com-
mercial phase contrast microscope. (b) The four phase-shifted interferograms of a
single FOV of piglet brain tissue and (c) a computed SLIM image.

C. Deep learning model
We employed a transfer learning approach in our deep learn-

ing framework to construct our machine learning classifier. This
technique is recommended for training a model when there are a
relatively small number of image instances.

As outlined in Fig. 3(a), we selected the Xception model, which
comprises 71 layers and has been pretrained on a large dataset of
over 1.6 × 106 images of different sizes and groups. Xception is the
most accurate pretrained model with the least number of parame-
ters.55,56 We also selected this model due to its robust feature extrac-
tion capacity and superior performance with our data instances over

FIG. 3. (a) Machine learning Xception network components of a single block. (b)
Entire network structure with a fine-tuned classification segment and three different
output models.

alternatives, such as ResNet57 and MofileNet.58 We fine-tuned the
base model to include two dropout layers of 0.75 [Fig. 3(b)].

III. RESULTS
A. Data

Our training data included 8016 out of the total 10 000 SLIM
images of piglet brain samples, obtained from 16 sections of different
piglets divided equally between four categories: AGA-diet, SGA-diet,
AGA-control, and SGA-control. Full IC reconstructions and sam-
ple frames are illustrated in Figs. 1(b) and 1(c). 992 images were
reserved in each category and randomly selected for validation as

FIG. 2. (a) Image of one of the 16 brain sections with the internal capsule demarcated in red. (b) Stitched mosaic of an internal capsule of an AGA piglet with experimental
diet obtained using 625 cSLIM images. (c) Stitched mosaic of an internal capsule of an AGA piglet with control diet obtained using 625 cSLIM images. (d) Sample AGA
experimental-diet frame, (e) sample AGA control-diet frame, (f) sample SGA control-diet frame, and (g) sample SGA experimental-diet frame. Scale bar 50 μm.
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well as for testing. Brightfield images were not included in the model,
as we wanted to achieve label-free detection without any stain. The
patch size of 1624 × 1224 pixel2 coincided with the field of view of
our imaging equipment. Images were augmented for training using
rotation, x axis flip, and y axis flip. The phase distributions of the
various groups are displayed in Figs. 4(a)–4(f). Each graph displays
one of the six possible pairings of the four categories. Figures 4(a)
and 4(b) show the different phase distributions caused by diets in the
same gestational classes, while Figs. 4(c)–4(d) show such differences
caused by gestational age in the same diet categories. Figures 4(e)
and 4(f) contrast mixed diet-age distributions. The closeness and
extent of overlap for each combination illustrates the minute numer-
ical differences in the pixels, suggesting that diagnostic capabilities
are largely due to differences in spatial distributions and phase den-
sity. This is further substantiated in the statistical differences in dry
mass measurements of the same samples found in our previous
study40 only after applying binary myelin masks to the quantitative
data.

B. Model accuracy and loss
Model accuracy and losses for three types of classifications are

shown in Fig. 5. In the case of distinguishing brain tissue based on
diet regimens, we obtained an accuracy of 80% [Fig. 5(a)] and a loss
of 0.35 [Fig. 5(b)]. These results are significant considering that the
subtlety of these differences would otherwise be undiscernible to
a trained histopathologist. There is negligible underfitting or over-
fitting in these models, and they could be characterized as having

appropriate and balanced fitting. In the case of classifying phase
maps based on gestational size, the results were slightly stronger
with an accuracy of 82% [Fig. 5(c)] and a loss under 0.3 [Fig. 5(d)].
There is minimal underfitting in this model; however, the training
loss is noisy near the final epochs, likely due to the large number of
parameters being evaluated with all the weights set to true. Finally,
the results for the classification of both diet and gestational age cat-
egories are, as is expected, considerably lower with an accuracy of
63% and a slight degree of underfitting [Fig. 5(e)]. The loss values
are also higher than individual comparisons, tapering off at the final
epochs around 0.8 instead of 0.3 [Fig. 5(f)].

C. Confusion matrices for validation and loss
The confusion matrix offers a quantitative indication of

the performance of a classifier. There are four classes in our
confusion matrix: “Diet-AGA,” “Control-AGA,” “Diet-SGA,” and
“Control-SGA.” This confusion matrix can have three kinds of
errors: the sample can be labeled incorrectly in terms of diet,
gestational size, or both. In the case of a perfect classification
model, the confusion matrix is diagonal with only true negatives
or true positives. Figure 6(a) shows a 4 × 4 confusion matrix
for the classification of each category on all test images from
16 slides.

The first row, corresponding to the Control-AGA category,
indicates 80% of samples labeled correctly with most errors
attributed to designating the samples with the same diet but with a
small gestational size. The second row, corresponding to Diet-AGA,

FIG. 4. Histograms of the count of pixel data in SLIM images for (a) AGA groups, (b) SGA groups, (c) control diet groups, (d) experimental diet groups, and (e) and (f) mixed
gestational age and diet groups.
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FIG. 5. Plots for diet classification (a) accuracy and (b) loss, (c) gestational size accuracy and (d) loss, and (e) all categories accuracy and (f) loss.

has 74% correct labeling, with most errors due to a mismatch of the
diet type. The third row, for Control-SGA, has 71% correct label-
ing, and the last row, for Diet-SGA, has only 62% correct labeling,
with 14% mislabeled as Control-SGA. The AGA categories outper-
form those of SGA, presumably due to a lower myelin abundance

inherent in the smaller gestational size, which may have been coun-
terbalanced by the experimental diet, thereby confusing the Diet-
SGA category with either AGA classes.

To further validate our model on slides that were not used
for training, we evaluated images from an untrained slide that is

FIG. 6. (a) Confusion matrix for classification of all four categories on the 16 slides that were used for training and (b) confusion matrix of an untrained experimental diet-SGA
slide.
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associated with an experimental diet and SGA. This is a test that
is separate and additional to 10% of the images used for testing
from the 16 sections. The results, shown in a confusion matrix
[Fig. 6(b)], were better than anticipated, exceeding the performance
of test images in this category, with a true positive rate of 72% for
both size and diet, with 77% for just diet, and 94% for just size.

IV. CONCLUSIONS
Current histopathological findings depend on manual inves-

tigations of stained tissue slices under a microscope by a trained
pathologist. The alternative methods of assessing myelin density,
such as MRI and PIXE, are indirect, cumbersome, and costly. Here,
we present evidence that our method of combining AI with spa-
tial light interference microscopy (SLIM) can quickly determine
differences in the myelin content without the use of molecular
stains or manual analysis. This is an important contribution to
neuroscience, especially given the significance of myelination in
brain development and the current challenges of measuring myelin
quantitatively.

We demonstrated that applying AI to SLIM images delivers
excellent performance in classifying single phase maps of brain tis-
sue to detect the level of myelin adequacy. ∼80% accuracy outcomes
for both binary distinctions, and 62% for all four categories, indi-
cate that the proposed method may be useful in quick screenings
for cases of suspected myelin disorders. These results are signifi-
cant as it would otherwise be impossible for a trained histopathol-
ogist to distinguish such myelin discrepancies. Not only does this
technique offer automatic screening, but multiple tissue samples
can be analyzed rapidly as the overall throughput of the SLIM tis-
sue scanner is comparable with that of commercial whole slide
scanners.

One way to improve on these results without simply adding
more images, while keeping the samples label-free, would be to infer
additional information through digital staining. This has already
been performed successfully with phase images,52 RI tomography,59

and autofluorescence.60 In our case, artificially recreating the LFB
stain or a myelin proteolipid protein fluorophore could help enhance
our results.

Future scope thus includes evaluating the myelin content with
multiple modalities and creating specificity masks using fluorescent
tags for constituent proteins. Employing PICS to mimic such tags
would facilitate investigations into the dynamic generation of myelin
around axons in real-time.
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