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Live-dead assay on unlabeled cells using phase
imaging with computational specificity
Chenfei Hu 1,2,8, Shenghua He3,8, Young Jae Lee 2,4, Yuchen He 1,2, Edward M. Kong2, Hua Li5,6,7,

Mark A. Anastasio2,5✉ & Gabriel Popescu 1,2,5✉

Existing approaches to evaluate cell viability involve cell staining with chemical reagents.

However, the step of exogenous staining makes these methods undesirable for rapid, non-

destructive, and long-term investigation. Here, we present an instantaneous viability

assessment of unlabeled cells using phase imaging with computation specificity. This concept

utilizes deep learning techniques to compute viability markers associated with the specimen

measured by label-free quantitative phase imaging. Demonstrated on different live cell cul-

tures, the proposed method reports approximately 95% accuracy in identifying live and dead

cells. The evolution of the cell dry mass and nucleus area for the labeled and unlabeled

populations reveal that the chemical reagents decrease viability. The nondestructive

approach presented here may find a broad range of applications, from monitoring the pro-

duction of biopharmaceuticals to assessing the effectiveness of cancer treatments.
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Rapid and accurate estimation of the viability of biological
cells is important for assessing the impact of drugs, physical
or chemical stimulants, and other potential factors in cell

function. The existing methods to evaluate cell viability commonly
require mixing a population of cells with reagents to convert a
substrate to a colored or fluorescent product1. For instance, using
membrane integrity as an indicator, the live and dead cells can be
separated by trypan blue exclusion assay, where only nonviable
cells are stained and appear as a distinctive blue color under a
microscope2,3. MTT and XTT assay estimate the viability of a cell
population by measuring the optical absorbance caused by for-
mazan concentration due to alteration in mitochondrial activity4–6.
Starting in the 1970s, fluorescence imaging has developed as a more
accurate, faster, and reliable method to determine cell viability7–10.
Similar to the principle of trypan blue test, this method identifies
individual nonviable cells by using fluorescent reagents only taken
up by cells that lost their membrane permeability barrier. Unfor-
tunately, the step of exogenous labeling generally requires some
incubation time for optimal staining intensity, making all these
methods difficult for quick evaluation. Importantly, the toxicity
introduced by stains eventually kills the cells and, thus, prevents the
long-term investigation.

Quantitative phase imaging (QPI) is a label-free modality that
has gained significant interest due to its broad range of potential
biomedical applications11,12. QPI measures the optical phase delay
across the specimen as an intrinsic contrast mechanism, and thus,
allows visualizing transparent specimen (i.e., cells and thin tissue
slices) with nanometer scale sensitivity, which makes this modality
particularly useful for nondestructive investigations of cell
dynamics (i.e. growth, proliferation, and mass transport) in both
2D and 3D13–18. In addition, the optical phase delay is linearly
related to the non-aqueous content in cells (referred to as dry
mass), which directly yields biophysical properties of the sample of
interest19–22. More recently, with the concomitant advances in
deep learning, we have witnessed exciting avenues for label-free
imaging. In 2018, Google presented “in silico labeling”, a deep
learning based approach that can predict fluorescent labels from

transmitted-light (bright field and phase contrast) images of
unlabeled samples23. Around the same time, researchers from the
Allen Institute showed that individual subcellular structures such
as DNA, cell membrane, and mitochondria can be obtained
computationally from bright-field images24. Because a QPI map
quantitatively encodes structure and biophysical information, it is
possible to apply deep learning techniques to extract subcellular
structures25,26, perform signal reconstruction27,28, correct image
artifacts29,30, convert QPI data into virtually stained or fluorescent
images31,32, and diagnose and classify various specimens33,34.

In this article, we demonstrate that rapid viability assay can be
conducted in a label-free manner using spatial light interference
microscopy (SLIM)35,36, a highly sensitive QPI method, and deep
learning. We apply the concept of phase imaging with compu-
tational specificity (PICS) to digitally stain for the live and dead
markers. Demonstrated on live adherent HeLa and CHO cell
cultures, we predict the viability of individual cells measured with
SLIM by using a joint EfficientNet37 and transfer learning38

strategy. Using the standard fluorescent viability imaging as
ground truth, the trained neural network classifies the viable state
of individual cell with 95% accuracy. Furthermore, by tracking
the cell morphology over time, unstained HeLa cells show sig-
nificantly higher viability compared to the cells stained with
viability reagents. These findings suggest that the PICS method
enables rapid, nondestructive, and unbiased cell viability assess-
ment, potentially valuable to a broad range of biomedical pro-
blems, from drug testing to the production of biopharmaceuticals.

Results
The procedure of image acquisition is summarized in Fig. 1. We
employed spatial light interference microscopy (SLIM)35 to
measure the quantitative phase map of cells in vitro. The system
is built by attaching a SLIM module (CellVista SLIM Pro, Phi
Optics, Inc.) to the output port of an existing phase-contrast
microscope (Fig. 1a). By modulating the optical phase delay
between the incident and the scattered field, a quantitative phase
map is retrieved from four intensity images via phase-shifting
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Fig. 1 Schematic of the imaging system and representative results. a CellVista SLIM Pro microscope (Phi Optics, Inc.) consists of an existing phase
contrast microscope and an external module attached to the output port. By switching between transmission and reflection excitation, both SLIM and co-
localized fluorescence images can be recorded via the same optical path. Before time-lapse imaging started, fluorescence viability reagents were mixed
with the cell culture. b Representative SLIM measurements of HeLa cell at 1, 6, and 8.5 h after staining. The experiment is repeated 4 times. c NucBlue
fluorescent signals of the live viability reagent. d NucGreen fluorescent signals of the dead viability reagents measured. e Viability states of the individual
cells. Source data are provided as a Source Data file. Scale bars: 50 µm in space.
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interferometry39. SLIM employs broadband LED as an illumi-
nation source and common-path imaging architecture, which
yields sub-nanometer sensitivity to optical pathlength changes
and high temporal stability39,40. By switching to epi-illumination,
the optical path of SLIM is also used to record the fluorescent
signals over the same field of view. Detailed information about
the microscope configuration can be found in Methods.

To demonstrate the feasibility of the proposed method, we
imaged and analyzed live cell cultures. Before imaging, 40 μL of
each cell-viability-assay reagent (ReadyProbes Cells Viability
Imaging Kit, Thermofisher) was added into 1 ml growth media,
and the cells were then incubated for approximately 15 min to
achieve optimal staining intensity. The viability-assay kit contains
two fluorescently labeled reagents: NucBlue (the “live” reagent)
combines with the nuclei of all cells and can be imaged with a
DAPI fluorescent filter set, and NucGreen (the “dead” reagent)
stains the nuclei of cells with compromised membrane integrity,
which is imaged with a FITC filter set. In this assay, live cells
produce a blue-fluorescent signal; dead cells emit both green and
blue fluorescence; The procedure of cell culture preparation can
be found in Methods.

After staining, the sample was transferred to the microscope
stage, and measured by SLIM and epi-fluorescence microscopy.
In order to generate a heterogeneous cell distribution that shifts
from predominantly alive to mostly dead cells, the imaging was
performed under room conditions, such that the low-temperature
and imbalanced pH level in the media would adversely injure the
cells and eventually cause necrosis. Recording one measurement
every 30 or 60 min, the entire imaging process lasted for
approximately 10 h. We repeated this experiment four times to
capture the variability among different batches. Figure 1b shows
the SLIM images of HeLa cells measured at t= 1 h, 6, and 8.5 h,
respectively, and the corresponding fluorescent measurements are
shown in Fig. 1c, d. The results in Fig. 1 show that the adverse
environmental condition continues injuring the cell, where
blebbing and membrane disruption could be observed during cell
death. Our QPI measurements agree with the results reported in
previous literature41. On the other hand, these morphological
alterations are correlated with the changes in fluorescence signals,
where the intensity of NucGreen (“dead” fluorescent channel)
continuously increases, as cells transit to dead states. By com-
paring the relative intensity between NucGreen and NucBlue
signals, semantic segmentation maps are generated to label
individual cell as either live or dead, as shown in Fig. 1e. The
procedure of generating the semantic maps can be found in
Supplemental Note 1. All collected image sequences were com-
bined to form a dataset for PICS training and testing, where each
sequence is a time-lapse recording of cells from live to dead states.
Then we randomly split the sequences with a ratio of approxi-
mately 6:1:1, to obtain training, validation, and testing dataset,
respectively. Instead of splitting by frame, we generated a training
dataset by dividing image sequences to ensure fair generalization.
In addition, we combined data across all measurements to take
underrepresented cellular activities into account, which makes the
purposed method generalizable.

Deep neural network architecture, training, validation, and
testing. With fluorescence-based semantic maps as ground truth,
a deep neural network was trained to assign “live”, “dead”, or
background labels to pixels in the input SLIM images. We
employed a U-Net based on EfficientNet (E-U-Net)37, with its
architecture shown in Fig. 2a. Compared to conventional U-Nets,
the E-U-Net uses EfficientNet37, a powerful network of relatively
lower complexity, as the encoding part. This architecture allows
for learning an efficient and accurate end-to-end segmentation

model, while avoiding training a very complex network. The
network was trained using a transfer learning strategy38 with a
finite training set. At first, the EfficientNet of E-U-Net (the
encoding part) was pre-trained for image classification on a
publicly available dataset ImageNet42. The entire E-U-Net was
then further fine-tuned for a semantic segmentation task by using
labeled SLIM images from the training and validation set.

The network training was performed by updating the weights
of parameters in the E-U-Net using an Adam optimizer43 to
minimize a loss function that is computed in the training set.
More details about the EfficientNet module and loss function can
be found in the Methods and Supplemental Note 2. The network
was trained for 100 epochs. At the end of each epoch, the loss
function related to the being-trained network was evaluated, and
the weights that yielded the lowest loss on the validation set were
selected for the E-U-Net model. Figure 2d shows training and
validation loss vs. the number of epochs, using 899 and 199
labeled images as training and validation datasets. The Methods
section and Fig. 2a–c present more details about the E-U-Net
architecture and network training.

To demonstrate the performance of phase imaging with
computational specificity (PICS) as a label-free live/dead assay, we
applied the trained network to 200 SLIM images not used in
training and validation. Figure 3a shows the three representative
testing phase maps, whereas corresponding ground truth and PICS
prediction are shown in Fig. 3b, c, respectively. This direct
comparison indicates that PICS successfully classifies the cell states.
We found that, most often, the incorrect predictions were caused by
cells located at the boundary of FOV, where only a portion of their
cell bodies was measured by SLIM. In addition, PICS may fail when
cells become detached from the well plates. In this situation, the
suspended cells appear out of focus, which gives rise to inaccurate
prediction. As reported in previous publications, the conventional
deep learning evaluation metrics focus on assessing pixel-wise
segmentation accuracy, which overlooks some biologically relevant
instances44. Here, we adopted an object-based evaluation metric,
which relies on comparing the dominant semantic label between the
predicted cell nuclei and the ground truth for individual nuclei. The
confusion matrix and the corresponding evaluation (e.g., precision,
recall, and F1-score) are shown in Table 1. A comparison with
standard pixel-wise evaluation and procedure of object-based
evaluation are included in Supplemental Note 3. The entries of
the confusion matrix are normalized with respect to the number of
cells in each category. Using the average F1 score across all
categories as an indicator of the overall performance, this PICS
strategy reports a 96.7% confidence in distinguishing individual live
and dead HeLa cells.

PICS on CHO cells. Chinese hamster ovary (CHO) cells are often
used for recombinant protein production, and it received U.S.
FDA approval for bio-therapeutic protein production. Here, we
demonstrate that our label-free viability assay approach is
applicable to other cell lines of interest in pharmaceutical appli-
cations. CHO cells were plated on a glass-bottom 6-well plate for
optimal confluency. In addition to NucBlue/NucGreen staining,
1 μM of staurosporine (apoptotic inducing reagent) solution was
added to the culture medium. This potent reagent permeates the
cell membrane and disrupts protein kinase, cAMP, and leads to
apoptosis in 4–6 h. The cells were then measured by SLIM and
epi-fluorescence microscopy. The cells were maintained in regular
incubation conditions (37 °C and 5% concentration of CO2)
throughout the experiment. In addition, we verified that the cells
were not affected by necrosis and lytic cell death (see Supple-
mental Note 4). After image acquisition, E-U-Net (EfficientNet-
B7) training was immediately followed. In the training process,
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1536 labeled SLIM images and 288 labeled SLIM images were
used for network training and validation, respectively. The
structure of EfficientNet-B7, training, and validation loss can be
found in Fig. S3a, b, respectively. The trained E-U-net was finally
applied to 288 unseen testing images to test the performance of
dead/viability assay. The procedure of imaging, ground truth
generation, and training was consistent with the previous
experiments.

Figure 4a shows the time-lapse SLIM image of CHO cells
measured at t= 0, 2, and 10 h after adding apoptosis reagent, and
the corresponding viability map determined by fluorescence
signal and PICS are plotted in Fig. 4b, c, respectively. In contrast
to necrosis, the cell bodies became gradually fragmented during
apoptosis. The visual comparison in Fig. 4 suggests that PICS
yields good performance in extracting cell nucleus and predicting
their viable state. Running an evaluation on individual cells, as

a 

b 

c 

d 

Fig. 2 Principle of E-U-Net training. a The E-U-Net. architecture includes an EfficientNet as the encoding path and five stages of decoding. The E-U-Net
includes a Down+Conv+BN+ ReLU block and 7 other blocks. The Down-Conv-BN-ReLU block represents a chain of down-sampling layer, convolutional
layer, batch normalization layer, and ReLU layer. Similarly, the Conv+BN+ ReLU is a chain of convolutional layer, batch normalization layer, and ReLU
layer. b The network architecture of EfficientNet-B3. Different blocks are marked in different colors. They correspond to the layer blocks of EfficientNet in a.
c The major layers inside the MBConvX module. X= 1 and X= 6 indicate the ReLU and ReLU6 are used in the module, respectively. The skip connection
between the input and output of the module is not used in the first MBConvX module in each layer block. d Training and validation loss vs epochs plotted in
the log scale.

φ (rad)

a b c 
SLIM Ground Truth PICS

Fig. 3 Results of E-U-Net on testing dataset. a representative SLIM
measurements of HeLa cells not used during training. b The ground truth
for viability of frames corresponding to a. c The PICS prediction shows high
level accuracy in segmenting the nuclear regions and inferring viability
states. The arrows indicate the inconsistence between ground truth and
PICS prediction caused by the cells located at the edge of the FOV are
subject to inference error. The images are randomly selected from a
combined dataset across 4 imaging experiments. Source data are provided
as a Source Data file. Scale bars: 50 µm in space.

Table 1 Evaluation of the E-U-Net performance.

Ground Truth

Live
(n= 1973)

Dead
(n= 246)

PICS Live 98.8% 2.4%
Dead 1.2% 97.6%

Evaluation Precision 99.6% 91.2%
Recall 98.8% 97.6%
F1 Score 99.1% 94.3%

An object-based accuracy metric is used to estimate the deep learning prediction by comparing
the dominant semantic label of HeLa cell nuclei with the ground truth. The entries of the
confusion are normalized with respect to number of cells in each class.
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shown in Table 2, the network gives an average F-1 score of
94.9%. Again, the inaccurate prediction is mainly caused by cells
at the boundary of the FOV. We also found rare cases where cells
show features of cells death at early stage45–47, but it was
identified as live by traditional fluorometric evaluation (for
example, see Fig. S5 in the Supplemental Information).
Furthermore, because most of the cells stay adherent, the PICS
accuracy was not affected by cell confluence. The evaluation
metrics at different confluence levels are included in the
Supplemental Note 4.

PICS on unlabeled HeLa cells. Performing viability assay on
unlabeled cells essentially circumvents the cell injury effect caused
by exogenous staining and produces an unbiased evaluation. To
demonstrate this feature on a different cell type, a fresh HeLa cell
culture was prepared in a 6-well plate, transferred to the micro-
scope stage, and maintained under room conditions. Half of the
wells were mixed with viability assay reagents, where the viability

was determined by both PICS and fluorescence imaging. The
remaining wells did not contain reagents, such that the viability of
these cells was only evaluated by PICS. The procedure of cell
preparation, staining, and microscope settings were consistent
with the previous experiments. We took measurements every
30 min, and the entire experiment lasted for 12 h.

Figure 5a and c shows SLIM images of HeLa cells with and
without fluorescent reagents at t= 0, 2.5, and 12 h, respectively,
whereas the resulting PICS predictions are shown in Fig. 5b and
d. Supplemental Video 1 shows a time-lapse SLIM measurement,
PICS prediction, and standard live-dead assay based on
fluorescent measurements. Supplemental Video 2 shows HeLa
cells without reagents. As expected, the PICS method depicts the
transition from live to dead state. In addition, the visual
comparison from Fig. 5a–d suggests that HeLa cells with viability
stains in the media appear smaller in size, and more rapidly enter
the injured state, as compared to their label-free counterparts.
Using TrackMate48, an ImageJ plugin, we were able to extract the
trajectory of individual cells and track their morphology over
time. As a result, the cell nucleus, area, and dry mass at each
moment in time can be obtained by integrating the pixel value
over the segmented area in the PICS prediction and SLIM image,
respectively. We successfully tracked 57 labeled and 34 unlabeled
HeLa cells. Figure 5e, f shows the area and dry mass change
(mean ± standard error), where the values are normalized with
respect to the one at t= 0. Our results of tracking agree with the
physiological description49,50, and are consistent with previously
reported experimental validations46,51. However, the short
swelling time in the reagent-treated cells suggests the toxicity of
the chemical compounds would potentially accelerate the pace of
cell death. Running two-sample t-tests, we found a significant
difference in cell nuclear areas between the labeled and unlabeled
cells, during the interval t= 2 and t= 7 h (p < 0.05). Similarly,
cell dry mass showed significant differences between the two
groups during the time interval t= 2 and t= 5 h (p < 0.05). In
this study, we focus on optimizing the PICS performance in
classifying live/dead markers at the cellular level. At the pixel
level, the trained network can reveal the cell shape change, but its
performance in capturing the nucleus shape and area is limited,
which makes the current approach subject to segmentation error.
This is largely due to the low contrast between the nucleus
boundary and cytoplasm in injured cells.

Although the effect of the fluorescent dye itself on the optical
properties of the cell at the imaging wavelength is negligible52–55,
training on images of tagged cells may potentially alter the cell
death mechanism and introduce bias when optimizing the E-U-Net.
To investigate this potential concern, we performed a set of
experiments where the unlabeled cells were imaged first by SLIM,
then tagged and imaged by fluorescence for ground truth. As
described in Supplemental Note 4, we found that the performance
of PICS, in this case, was consistent with the results shown in Figs. 3
and 4, where SLIM was applied to tagged cells. The data indicated
that the live and dead cells were classified with 99% and 97%
sensitivity, respectively, suggesting that the proposed live-dead assay
method can be used efficiently on cells that were never labeled. Of
course, SLIM imaging of already stained cells, followed by
fluorescence imaging, is a more practical workflow, as the input-
ground truth image pairs can be collected continuously. On the
other hand, training on unlabeled cells allows us to achieve the true
label-free assay which is most valuable in applications.

Discussion
We demonstrated PICS as a method for high-speed, label-free,
unbiased viability assessment of adherent cells. This approach
utilizes quantitative phase imaging to record high-resolution

φ (rad)

a b c 

t = 0

t = 2 hr

t = 10 hr

SLIM Ground Truth PICS

Fig. 4 Results of PICS on adherent CHO cells. a Time-lapse SLIM
measurement of CHO cells measured at t= 0, 2, and 10 h. The data was
not used in training or validation. b The ground truth for viability of frames
corresponding to a. c The PICS prediction shows high level accuracy in
segmenting the nuclear regions and inferring viability states. The images
are randomly selected from a combined dataset across 4 imaging
experiments. Scale bars: 50 µm in space.

Table 2 Evaluation of the E-U-Net performance on CHO with
apoptosis reagents.

Ground truth

Live
(n= 2071)

Dead
(n= 6328)

PICS Live 90.1% 1.7%
Dead 9.9% 98.3%

Evaluation Precision 94.6% 96.8%
Recall 90.1% 98.3%
F1 Score 92.3% 97.5%

The trained network yields high confidence in identifying live or apoptotic CHO cells. The entries
of the confusion are normalized with respect to number of cells in each class.
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morphological structures of unstained cells, combined with deep
learning techniques to extract intrinsic viability markers. Tested
on HeLa and CHO adherent cultures, our optimized E-U-Net
method reports outstanding accuracy of 96.7% and 94.9% in
segmenting the cell nuclei and classifying their viability state. In
Supplemental Note 5, we compared the E-U-Net accuracy with
the outcomes from other networks or training strategies. By
integrating the trained network on NVIDIA graphic processing
units, the proposed label-free method enables real-time acquisi-
tion and viability prediction (see Supplemental Video 3 for a
demonstration). One SLIM measurement and deep learning
prediction take ~100 ms, which is approximately 8 times faster
than the acquisition time required for fluorescence imaging with
the same camera. Of course, the cell staining process itself takes
time, approximately 15 min in our case. The real-time in situ
feedback is particularly useful in investigating viability state and
growth kinetics in cells, bacteria, and samples in vivo over
extended periods of time56–59. In addition, results suggest that
PICS rules out the adverse effect on cell function caused by the
exogenous staining, which is beneficial for the unbiased assess-
ment of cellular activity over a long time (e.g., many days). Of
course, this approach can be applied to other cell types and cell
death mechanisms.

Prior studies typically tracked QPI parameters associated with
individual cells over time to identify morphological features corre-
lated with cell death45,46,51. In contrast, our approach provides a
real-time classification of cells based on single frames, which is a
much more challenging and rewarding task. Compared to these
previous studies, our PICS method avoids intermediate steps of
feature extraction, manual annotation, and separate algorithms for
training & cell classification. We employ a single DNN architecture
with direct QPI measurement as input, and the prediction accuracy
is significantly improved over the previously reported data47. The
labels output by the network can be used to create binary masks,

which in turn yield dry mass information from the input data. The
accuracy of these measurements depends on the segmentation
process. Thus, we anticipate that future studies will optimize further
the segmentation algorithms to yield high-accuracy dry mass
measurements over long periods of time.

Label-free imaging methods are valuable for studying biological
samples without destructive fixation or staining. For example, by
employing infrared spectroscopy, the bond-selective transient
phase imaging measures molecular information associated with
lipid droplets and nucleic acids60. In addition, harmonic optical
tomography can be integrated into an existing QPI system to
report specifically on non-centrosymmetric structures61. These
additional chemical signatures would potentially enhance effec-
tive learning and produce more biophysical information. We
anticipate that the PICS method will provide high-throughput cell
screening for a variety of applications, ranging from basic
research to therapeutic development and protein production in
cell reactors11. Because SLIM can be implemented as an upgrade
module onto an existing microscope and integrates seamlessly
with fluorescence, one can implement this label-free viability
assay with ease.

Methods
Cell preparation. HeLa cervical cancer cells (ATCC CCL-2TM) and Chinese
hamster ovary (CHO-K1 ATCC CCL-61TM) cells were purchased from ATCC and
kept frozen in liquid nitrogen. Before the experiments, we thawed and cultured the
cells into a T75 flask in Dulbecco’s Modified Eagle Medium (DMEM with low
glucose) containing 10% fetal bovine serum (FBS) and incubated in 37 °C with 5%
CO2. As the cells reach 70% confluence, the flask was washed thoroughly with
phosphate-buffered saline (PBS) and trypsinized with 3 mL of 0.25% (w/v) Trypsin
EDTA for three minutes. When the cell starts to detach, the cells were suspended in
5 mL DMEM and passaged onto a glass-bottom 6 well plate to grow. To evaluate
the effect of confluency on PICS performance, CHO cells were plated in three
different confluency levels: high (60,000 cells), medium (30,000 cells), and low
(15000 cells). HeLa and CHO cells were then imaged after two days.
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Fig. 5 Viability of HeLa cells with and without reagent stains. a. SLIM images of cells recorded at 0, 2.5 and 12 h after staining. b. The PICS prediction
associated with the frames in a. c. SLIM images of unstained HeLa cells measured at same time points as a. d. The corresponding PICS prediction
associated with the frames in c. e. Relative cell nuclear area change of tracked cells. The central line represents the average, and the shaded region
indicates the standard error. f. Relative cell nucleus dry mass change. The central line represents the average, and the shaded region indicates the standard
error. Source data are provided as a Source Data file. Scale bars: 50 µm in space.
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SLIM imaging. The SLIM optical setup is shown in Fig. 1a. In brief, the microscope is
built upon an inverted phase-contrast microscope with a SLIMmodule (CellVista SLIM
Pro; Phi Optics) attached to the output port. Inside the module, a spatial light mod-
ulator (Meadowlark Optics) is placed at the system pupil plane via a Fourier transform
lens to constantly modulate the phase delay between the scattered and incident light. By
recording four intensity images with phase shifts of 0, π/2, π, and 3π/2, a quantitative
phase map, φ, can be computed by combining the 4 acquired frames in real-time.

For both SLIM and fluorescence imaging, cultured cells were measured by a 40×
objective, and the images were recorded by a CMOS camera (ORCA-Flash 4.0;
Hamamatsu) with a pixel size of 6.5 μm. For each sample, we randomly selected a
cellular region approximately 800 × 800 µm2 to be measured by SLIM and
fluorescence microscopy (NucBlue and NucGreen). The acquisition time of each
SLIM and fluorescent measurements are 50 ms and 400 ms, respectively, and the
scanning across all 6 wells takes roughly 4.3 min, where the delay is caused by
mechanical translation of the motorized stage. For deep learning training and
predicting, the recorded SLIM images were downsampled by a factor of 2. This step
saves computational cost and does not sacrifice information content. We would
like to point out that the acquisition of the fluorescence data is needed only for the
training stage. For real-time interference, our acquisition is up to 15 frames
per second for SLIM images, while the inference takees place in parallel.

E-U-Net architecture. The E-U-Net is a U-Net-like fully convolutional neural
network that performs an efficient end-to-end mapping from SLIM images to the
corresponding probability maps, from which the desired segmentation maps are
determined by the use of a softmax decision rule. Different from conventional U-Nets,
the E-U-Net uses a more efficient network architecture, EfficientNet37, for feature
extraction in the encoding path. Here, EfficientNets refers to a family of deep con-
volutional neural networks that possess a powerful capacity of feature extraction but
require much fewer network parameters compared to other state-of-the-art network
architectures, such VGG-Net, ResNet, Mask R-CNN, etc. The EfficientNet family
includes eight network architectures, EfficientNet-B0 to EfficientNetB7, with an
increasing network complexity. EfficientNet-B3 and EfficientNet-B7 were selected for
training E-U-Net on HeLa cell images and CHO cell images, respectively, considering
they yield the most accurate segmentation performance on the validation set among
all the eight EfficientNets. See Supplemental Note 2 and Fig. 2b, c for more details
about the EfficientNet-B3 and EfficientNet-B7.

Loss function and network training. Given a set of B training images of M ×N
pixels and their corresponding ground truth semantic segmentation maps, loss function
used for network training is defined as the combination of focal loss62 and dice loss63:

LFocal loss ¼ � 1
B
∑
B

i¼1

1
MN

∑
x2Ω

½1� yiðxÞTpiðxÞ�
γ
yiðxÞT log2piðxÞ; ð1Þ

LDice loss ¼ 1� 1
3
∑
2

c¼0

2TPc

2TP þ FPc þ FNc
ð2Þ

Lcombined ¼ αLFocal loss þ βLDice loss ð3Þ
In the focal loss LFocal_loss, Ω ¼ fð1; 1Þ; ð1; 2Þ; :::; ðM;NÞg is the set of spatial

locations of all the pixels in a label map. yiðxÞ 2 f½1; 0; 0�T ; ½0; 1; 0�T ; ½0; 0; 1�T g
represents the ground-truth label of the pixel x related to the ith training sample,
and the three one-hot vectors correspond to the live, dead and, background classes,
respectively. Accordingly, the probability vector PiðxÞ 2 R3 represents the
corresponding predicted probabilities belonging to the three classes.
½1� yiðxÞTpiðxÞ�

γ
is a classification error-related weight that reduces the relative

cross-entropy yiðxÞT log2piðxÞ for well-classified pixels, putting more focus on hard,
misclassified pixels. In this study, γ was set to be the default value of 2 as suggested
in Ref. 62. As the dice loss LDice_loss, the TPc, FPc, and FNc are the number of true
positives, that of false positives, and that of false negatives, respectively, related to
all pixels of viability class c 2 f0; 1; 2g in the B images. Here, c= 0, 1, and 2
correspond to the live, dead, and background classes, respectively. In the combined
loss function, α; β 2 f0; 1g are two indicators that control whether to use focal loss
and dice loss in the training process, respectively. In this study, α and β were set to
[1, 0] and [1, 1] for training the E-U-Nets on the HeLa cell dataset and CHO cell
dataset, respectively. The choices of [α, β] were determined by the segmentation
performance of the trained E-U-Net on the validation set.

The E-U-Net was trained with randomly cropped patches of 512 × 512 pixels
drawn from the training set by minimizing the loss function defined above with an
Adam optimizer43. In regard to Adam optimizer, the exponential decay rates for 1st

and 2nd moment estimates were set to 0.9 and 0.999, respectively; a small constant
ɛ for numerical stability was set to 10−7. The batch sizes were set to 14 and 4 for
training the E-U-nets on the HeLa cell images and CHO cell images, respectively.
The learning rate was initially set to 5 × 10−4. At the end of each epoch, the loss of
a being-trained E-U-Net was computed on the whole validation set. When the
validation loss did not decrease for 10 training epochs, the learning rate was
multiplied by a factor of 0.8. This validation loss-aware learning rate decaying
strategy benefits for mitigating the overfitting issue that commonly occurs in deep
neural network training. Furthermore, data augmentation techniques, such as
random cropping, flipping, shifting, and random noise and brightness adding, etc.,

were employed to augment training samples on the fly for further reducing the
overfitting risk. The E-U-Net was trained for 100 epochs. The parameter weights
that yield the lowest validation loss were selected and subsequently used for model
testing and further model investigation.

The E-U-Net was implemented using the Python programming language with
libraries including Python 3.6 and Tensorflow 1.14. The model training, validation,
and testing were performed on an NVIDIA Tesla V100 GPU of 32 GB VRAM.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data producing the graphs in the article are provided with this paper. In addition, an
example set of the SLIM images and corresponding viability maps used in this study is
deposited in the GitHub repository “shenghh2015/label-free-viability-assay” [https://
github.com/shenghh2015/label-free-viability-assay]. The complete dataset is not deposited due
to its massive size, but is available from the corresponding author upon request. Requests will
be answered within two weeks. Source data are provided with this paper.

Code availability
The MATLAB script to generate semantic segmentation maps, along with representative
input images is provided as Supplementary Software. The trained E-U-Net models along
with sample testing images are available for download at https://github.com/
shenghh2020/label-free-viability-assay.
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Supplementary Note 1: Semantic map generation 

Semantic segmentation maps were generated in MATLAB with a customized script. First, for 

each NucBlue and NucGreen image pair, an adaptive thresholding was applied to separate the cell 

nucleus and background, where the segmented cell nuclei were obtained by computing the union 

of the binarized fluorescent image pair. We removed the segmentation artifacts by filtering out the 

tiny objects below the size of a typical nucleus. Next, using on the segmentation masks, we 

calculated the ratio between the NucGreen and NucBlue fluorescence signal. A histogram of the 

average ratio within the cell nucleus is plotted in Fig. S1, where three distinctive peaks were 

observed corresponding to the live, injured and dead cells. Because NucGreen/NucBlue reagent is 

only designed for live and dead classification, the histogram of injured cells is partially overlapped 

with the live cells. By selecting a threshold value that gives the lowest histogram count between 

dead and injured cells, we assigned label “live” to all live and injured cells, while the remaining 

cells as “dead”. 



 

Figure S1. Histogram of fluorescence signal ratio.  

 

Supplementary Note 2: EfficientNet 

The MBConvX is the principal module in an EfficientNet. It approximately factorizes a 

standard convolutional layer into a sequence of separable layers to shrink the number of parameters 

needed in a convolution operation while maintaining a comparable ability of feature extraction. 

The separable layers in a MBConvX module are shown in Fig. 2c. Here, MBConv1(X=1) and 

MBConv6 (X=6) indicate that a ReLU layer and ReLU6 layer are employed in this module, 

respectively. ReLU6 is a modification of the rectified linear unit, where the activation is limited to 

a maximum size of 6. A MBConvX module in Fig. 2b may include a down-sampling layer, which 

can be inferred by the indicated feature map dimensions. The first MBConvX in each layer block 

does not contain a skip connection between its input and output (indicated as a dash line in Fig. 

2c), since the input and output of that module have different sizes.  

 

Supplementary Note 3: PICS evaluation at a cellular level 



We implemented a U-Net based EfficientNet (E-U-Net) to extract markers associated with 

viable state of cells measured by SLIM. In Table S1, we show the conventional confusion matrix 

and corresponding F1 score evaluated on pixels in testing images. Figure S2a shows a represented 

raw E-U-Net output image. As indicated by the yellow arrow, there exist cases where a segmented 

cell may have multiple semantic labels. The conventional deep learning evaluation method only 

focuses on assessing pixel-wise segmentation accuracy, which overlooks some biologically 

relevant instances (the viable state of the entire cell) [1]. And this motives us to adopt an object-

based evaluation that estimates the E-U-Net accuracy for individual cell.  

 

 

Table S1. Pixel-wise evaluation of the trained E-U-Net. Due to the fact that the E-U-Net 

prediction assigns multiple labels to one cell nucleus, we converted the pixel-wise classification 

into cell-wise classification, which is more relevant biologically (Table 1 in the main text). 

 

First, we use dominant semantic label across a cellular region to denote the viable state for 

this cell (Figure S2b). And we compare this semantic label with the same cell in ground truth 

image, repeat this step across all testing images, and obtain the cell-wise evaluation as shown in 

the article Table 1.  



 

Figure S2. a. Output of E-U-Net on a representative testing image.  The network assigns semantic 

labels to each pixel, and thus for some cells, more than one semantic label can be observed within 

the cell body. b. we use the dominant semantic label to indicate the viability state of a cell, and 

then the performance of training is evaluated at a cellular level, referred to the cell-wise evaluation. 

The images are randomly selected from a combined dataset across 4 imaging experiments. Scale 

bars: 50 μm in space.   

 

Supplementary Note 4: PICS on CHO cells   

Evaluate the effect of lytic cell death  

Before performing experiments on CHO cells, a preliminary study was conducted, as follows. 

We prepared live cell cultures and split them into the two groups. 1 µM of staurosporine was added 

into the medium of the experimental group, whereas the others were kept intact as control. Both 

control and experimental cells were measured with SLIM for 10 hours under regular incubation 

condition (37 °C and 5% concentration of CO2).  Figure S3a and S3b show the QPI images of 

experimental and control cells measured at t = 0.5, 6.5, 7 and 10 hours, respectively. Throughout 

the time-course, the untreated cells remained attached to the petri-dish. Moreover, as indicated by 

the yellow arrows, the control cells divided at t = 6.5 hr. In contrast, cells treated with staurosporine 



presented drastically different characteristics, where the cell volume decreased, and membrane 

ruptured or became detached. This preliminary result suggests that, under our regular incubation 

condition, the cells did not suffer from lytic cell death.  

 

Figure S3. Time-lapse SLIM recording of CHO cells with (a) and without (b) staurosporine that 

introduces cell apoptosis, under regular incubation condition. For the control group, the cells 

continued growing and dividing without signs of cell death, which ruled out the existence of lytic 

cell death. The images are selected from 1 experiments, and the results are consistent across 27 

measured field of views (FOV). Scale bar: 50 μm in space   

 

 

PICS training and testing on CHO cell images  

After validation the efficacy of staurosporine on introducing apoptotic cell death, we acquired 

images on CHO cells and generated the dataset for PICS training. The training was conducted on 

E-U-Net (EfficientNet-B7), whose network architecture, and its training/validation loss are shown 

in Figure. S4. 



 

Figure S4. CHO cells viability training with EfficientNet-B7. a. The network architecture of 

EfficientNet-B7. b. Training and validation focal losses vs number of epochs plotted in the log 

scale. 

 

We visually inspected the difference between the ground truth and machine learning 

prediction in the testing dataset. First, we saw prediction errors due to cells located at the boundary 

of the FOV, as explained in the previous comments. In addition, we found rare cases where live 

CHO cells were mistakenly labeled as dead (see Fig. S5 below for an illustration of CHO cells 

with staurosporine administration at t = 0.5 hour). In SLIM, these cells present features of 

abnormal cell shapes and decreased phase values, but severe membrane rupture was not observed. 

Previous studies suggested that these morphological features are early indicators of cell death [2-

4], but it was identified as live using traditional fluorometric evaluation.   



 

Figure S5. Cells with irregular shapes but no severe membrane rupture are subjected to erroneous 

classification. a. Input SLIM image. b. Ground truth. c. PICS output based on input in a.  The 

images are randomly selected from a combined dataset across 4 imaging experiments. Scale bar: 

50 μm in space   

 

 

PICS performance on cells under different confluence  

As discussed in the manuscript, live CHO cell culture was prepared in a 6-well plate at three 

confluence levels, staurosporine solution was added into the culture medium to introduce 

apoptosis. Figure. S6 show SLIM image of high, intermediate, and low confluence CHO cells 

measured at t = 0. Although, aggregating into clusters, the cell shape and boundary can be easily 

identified. All SLIM images were combined for training and validation. In testing, we estimated 

the PICS performance vs. cell confluence, and the results are summarized in Table. S2a-c.  



 

Figure S6. SLIM images of high (a), intermediate (b), and low (c) confluence CHO cells. The 

images are randomly selected from a combined dataset across 4 imaging experiments. Scale bar: 

50 μm in space   

 

 

Table S2. PICS performance vs. CHO cell confluence  

 

Training on unlabeled cell SLIM images 

  During the data acquisition, we added FL viability reagents at the beginning, and this 

allows us to monitor the viable state changes of the individual cells over time. However, such data 



acquisition strategy can, in principle, introduce bias when optimizing the E-U-Net. This effect can 

be ruled out by collecting label-free images first, followed by exogenous staining and fluorescent 

imaging to obtain the ground truth, at the cost of increased efforts in staining, selecting FOV and 

re-focusing.  

To study this potential effect, we performed a control experiment described as follows. 

Live CHO cells were prepared and passaged onto two glass-bottom 6-well plates. 1 μM of 

staurosporine was added into each well to introduce apoptosis. At t = 0, cells in one well were 

imaged by SLIM, followed by reagents staining and fluorescence imaging. After 60 minutes, we 

repeated this step, but measuring the cells in the other well. Throughout the experiment, the cells 

were maintained in 37 °C and 5% concentration of CO2. In this way, cells in each well were only 

measured once, and we obtained a dataset of unlabeled QPI images that resemble the structure of 

a testing dataset used in this study.  The experiment was repeated 4 times, resulting in a total of 

2400 SLIM and fluorescent pairs, on which PICS training and testing were performed. Table S3 

shows the PICS performance on this new dataset, where live and dead cells were classified with 

99% and 97% sensitivity, respectively.  Thus, we can conclude that PICS optimization on cells 

without fluorescent stains does not compromise the prediction accuracy, which makes the 

proposed live-dead assay method robust for a variety of experiment settings.  



 

 

Table S3. Evaluation of the PICS performance on truly unlabeled CHO cells with apoptosis 

reagents. 

 

Supplementary Note 5: Comparison of PICS performance under various training strategies 

We have attempted to compare cell viability prediction performance under various network 

architecture settings. We compared three network settings: 1) an E-U-net trained by use of a pre-

trained EfficientNet; 2) an E-U-net trained from scratch; and 3) a standard U-net [5] trained from 

scratch. In these additional experiments, the U-net architecture employed was a standard U-net 

[5], with the exception that batch normalization layers were placed after each convolutional layer 

to facilitate the network training. EfficientNet-B0 was employed in the E-U-nets to make sure that 

the network size of E-U-net (7.8 million of parameters) approximately matched that of a standard 

U-net (7.85 million of parameters). A combined loss that comprised focal and dice losses (denoted 

as dice+focal loss) was used for network training. Other training settings were consistent with how 

the E-U-net was trained, as described in the manuscript. After the networks were trained with 

training and validation data from HeLa cell datasets and CHO cell datasets, they were tested on 



the testing data from the two datasets, respectively. The average pixel-wise F1 scores over the live, 

dead and background classes were computed to evaluate the performance of the trained networks, 

as reported in Table S4. It can be observed from the table that, on both the two testing datasets, the 

average F1 scores corresponding to an E-U-net are much higher than those corresponding to a 

standard U-net when both of them were trained from scratch. Furthermore, as expected, an E-U-

net trained with a pre-trained EfficientNet achieves a better performance than the one trained from 

scratch. These results demonstrate the effectiveness of the E-U-net architecture and the transfer 

learning techniques in training a deep neural network for pixel-wise cell viability prediction.  

 

Table S4. Average F1 scores related to E-U-nets trained with a pre-trained EfficientNet-B0, E-U-

nets trained from scratch, and standard U-nets trained from scratch, respectively. 

 

In addition, we compared the average pixel-wise F1 scores corresponding to E-U-nets 

trained with various loss functions, including a dice+focal loss, a standard focal loss, a standard 

dice loss, and a weighted cross entropy (WCE) loss. To be consistent with the network settings in 

the manuscript, a pre-trained EfficientNet-B3 and a pre-trained EfficientNet-B7 were employed 

for training the E-U-nets on the HeLa cell dataset and CHO cell datasets, respectively. The class 

weights related to live, dead, and background classes in the weighted cross entropy loss were set 

to [0.17, 2.82, 0.012] and [2.32, 0.654, 0.027] for the network training on the HeLa cell dataset 

and CHO cell datasets, respectively. In each of the weight cross entropy losses, the average of 

weights over the three classes is 1, and the weights related to each class were inversely proportional 



to the percentages of pixels from each class in the HeLa cell and CHO cell training datasets: [6.7%, 

0.4%, 92.9%] and [1.1%, 3.9%, 95%], respectively. Other network training settings were 

consistent with how the E-U-net was trained as described in the manuscript. The trained networks 

were then evaluated on the testing HeLa cell dataset containing 100 images and testing CHO cell 

dataset containing 288 images, respectively. The average pixel-wise F1 scores were computed over 

all pixels in the two testing sets as shown in Table S5. It can be observed in the table that, on both 

the two datasets, E-U-nets trained with a dice+focal loss produced higher average pixel-wise F1 

scores than those trained with a dice loss or a WCE loss. 

 

 

Table S5. Average F1 scores related to E-U-nets trained with various loss functions. 

 

We further compared E-U-nets trained with a dice+focal loss to those trained with a dice 

loss or a WCE loss by investigating their agreements on the dice coefficients of each class related 

to the predictions for each image sample in the two testing datasets. Here, let us denote Ddice+focal, 

Ddice, and DWCE as the dice coefficients produced by E-U-nets trained with a dice+focal loss, a dice 

loss and a weighted cross entropy loss, respectively. Bland-Altman plots were employed to analyze 

the agreement between Ddice+focal and Ddice and that between Ddice+focal and DWCE on testing dataset 

of HeLa and that of CHO, respectively. Here, a Bland-Altman plot of two paired dice coefficients 

(i.e. Ddice+focal vs. Ddice) produces a scatter plot x-y, in which the y axis (vertical axis) represents the 

difference between the two paired dice coefficients (i.e. Ddice+focal - Ddice) and the x axis (horizontal 



axis) shows the average of the two dice coefficients (i.e. (Ddice+focal + Ddice)/2). 𝜇𝑑 and 𝜎𝑑 represent 

the mean and standard deviation of the differences of the paired dice coefficients over the image 

samples in a specific testing dataset. The results corresponding to Ddice+focal vs. Ddice and Ddice+focal 

vs. DWCE are reported in Figure S7 and Figure S8, respectively. In each figure, the subplots from 

left to right show the Bland-Altman plots related to the predictions for live, dead, and background 

classes, respectively. It can be observed from Figures S7-8 that, for predicting live and dead pixels, 

both the Ddice+focal > Ddice (or Ddice+focal - Ddice > 0) and Ddice+focal > DWCE (or Ddice+focal – DWCE > 0) 

hold at the majority of the image samples in the two datasets, though for the background prediction, 

Ddice+focal is comparable to Ddice and DWCE. These results suggest that compared to a dice or WCE 

loss, a focal+dice loss can improve the performance of predicting live and dead pixels for the 

majority of testing images from both the two datasets. 

 

Figure S7. Ddice+focal  vs. Ddice on testing dataset of HeLa (a) and CHO (b), where 𝜇𝑑 and 𝜎𝑑 

represent the mean and standard deviation of Ddice+focal - Ddice .   



 

 

Figure S8. Ddice+focal  vs. DWCE on testing dataset of HeLa (a) and CHO (b), where 𝜇𝑑 and 𝜎𝑑 

represent the mean and standard deviation of Ddice+focal - DWCE .   
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